【摘 要】
:
Ag3PO4作为一种新兴半导体光催化剂材料,其禁带宽度为 2.36eV,能吸收波长小于 530 纳米的太阳光[1].但是,Ag3PO4纳米晶体在溶液法制备时成核和生长很快,容易生成粒子尺寸
【机 构】
:
同济大学化学系 上海 200092
论文部分内容阅读
Ag3PO4作为一种新兴半导体光催化剂材料,其禁带宽度为 2.36eV,能吸收波长小于 530 纳米的太阳光[1].但是,Ag3PO4纳米晶体在溶液法制备时成核和生长很快,容易生成粒子尺寸较大的单晶(约在 500nm[2]).如若选择合适的模板,并以此模板为反应界面来控制其生长,将会得到粒径较小、比表面积较大、活性位点多的 Ag3PO4复合半导体材料.于是,我们基于 Ag 与 Ag3PO4相亲性,选择 Ag 纳米棒为模板,通过溶液共沉淀法将 Ag3PO4包覆在 Ag 纳米棒表面,得到 Ag@Ag3PO4复合结构.然后,通过种子生长法在 Ag3PO4表面进行宽带隙 ZnO 纳米棒阵列的生长,得到 Ag@Ag3PO4@ZnO 三元复合半导体材料.RhB 的光催化降解测试表明,Ag@Ag3PO4@ZnO 相对于 Ag3PO4 及其与 Ag、ZnO 的二元复合物具有更高的光催化活性.
其他文献
2010年7月15日大连新港原油管线爆炸,发生溢油事件。本研究对该海域8个石油污染表层海水样品进行了石油降解菌多样性研究。利用Real-timePCR技术对海水中的细菌16SrRNA基因和
气-液-固(VLS)生长模型已被广泛应用于指导各种一维纳米材料的生长1.尽管人们用原位电镜技术原位观察了纳米线的生长,并研究了其成核和生长动力学2,但对VLS生长的本源依
利用碱金属和萘的四氢呋喃溶液还原氧化石墨烯,然后对其进行循环烷基化反应,获得了烷基功能化程度不同的石墨烯(f-rGOs1,f-rGOs2).将制备得到的还原氧化石墨烯 rGOs 和烷
本文通过便捷的原位生长过程制备出石墨烯钴铝水滑石复合物.首先利用勃姆石(AlOOH)溶胶包覆的石墨烯为前驱体,随后通过简单的水热过程得到石墨烯较附着的钴铝水滑石纳米
Self-assembly,driven by non-covalent interactions is the fundamental mechanism behind the formation of cellular machineries that perform essential functions
单质 Sn 的理论储锂容量可达 991mAh/g,远高于商业石墨负极材料,是一种极具潜力的锂电池电极材料.但其在充放电过程中 Li+的嵌入、解嵌会引起体积膨胀,造成电极粉化,导致
肺动脉高压(pulmonary artery hypertension, PAH)是一种诊断相对困难、愈后较差的肺部疾病,严重影响着患者的生活质量。低氧性肺动脉高压是WHO关于肺动脉高压五大分类中的第三
木质素是一种资源丰富的天然高分子材料,分子结构复杂,反应活性低,制备纳米木质素将显著提高其利用价值[1,2].本文以工业木质素为原料,采用液相沉积法制备纳米木质素及其
柔性电子器件,如柔性电池、电子皮肤等,广泛应用于能量收集和多能量传感等领域[1]。铁电高分子具有优异的机电转换效率,能够很好的将机械能、声能等能量转换成电信号。我们