【摘 要】
:
晶体硅材料是太阳能电池的主要材料,其性能的好坏直接影响太阳能电池的光电转换效率。由于多孔硅具有好的减反效果,制作简单,在多晶硅太阳电池应用中被用作减反层,在太阳能光解水中作为基地光电极,是当前研究的热点。多孔硅的主要制备方法是化学刻蚀法、光化学刻蚀法、水热刻蚀法以及电化学刻蚀,但制备出的多是处于纳米级的孔,在本工作中,我们使用电化学阳极氧化法,在以HF为电解液中加入离子液体([BMIm]BF4)添
【机 构】
:
山西大同大学应用化学研究所 大同 037009
【出 处】
:
第十三届全国太阳能光化学与光催化学术会议
论文部分内容阅读
晶体硅材料是太阳能电池的主要材料,其性能的好坏直接影响太阳能电池的光电转换效率。由于多孔硅具有好的减反效果,制作简单,在多晶硅太阳电池应用中被用作减反层,在太阳能光解水中作为基地光电极,是当前研究的热点。多孔硅的主要制备方法是化学刻蚀法、光化学刻蚀法、水热刻蚀法以及电化学刻蚀,但制备出的多是处于纳米级的孔,在本工作中,我们使用电化学阳极氧化法,在以HF为电解液中加入离子液体([BMIm]BF4)添加剂,在不同的电流密度下分别对p-Si和n-Si进行了刻蚀,成功制备出了均匀的微孔n-Si光电极,并对刻蚀后的硅电极的表面形貌以及光电性能进行了表征。
其他文献
为了解决珠海市在咸潮时期缺水的问题,保障珠海及澳门地区供水安全,珠海市政府决定实施西水东调工程。本文介绍了西水东调工程设计调水方案的优化组合以及技术经济比选情况。
本文通过通辽市“引乌入通”输水工程的设计及施工实践,探讨了西辽河平原区输水管道工程在设计方案、管材选型及施工管理方面的特点及存在问题,以便总结经验,指导今后输水工程的设计及施工。
TiO2光催化剂由于无毒、高效等优点已经在治理环境方面有了广泛的应用,近年来还发现TiO2在光动力治疗(PDT)方面有良好的效果,但TiO2的水稳定性较差,且激发光需要紫外光,这大大限制了它在这方面的应用[1,2]。 本文采用多轻基法,以谷氨酸作为掺杂剂,一步合成既具有良好水稳定性,又具有可见光光催化活性的N掺杂TiO2。实验证明,用此种方法制备的TiO2分散在水中后,静置三天后仍然可以保持悬浊
光催化是一个在光辐照下发生在材料表面的催化过程。TiO2是一种半导体材料(锐钛矿TiO2的禁带宽度(Eg)约为3.26 eV),当受到能量大于或等于其能隙(Eg)的入射光照射时,价带上的电子会吸收光子而被激发,从价带跃迁到导带,留下空穴在价带,从而形成所谓电子(e-)-空穴(h+)对,即光生载流子.由光激发产生的电子(e-)可直接还原有机物(如染料Dye)或者与电子接受体反应;而光激发产生的空穴(
目前,世界各国的很多城市的多个城市都严重缺水。而如果水体被大量的病原生物所污染后,将能够引发痢疾和其它各种多类疾病。因此,如何寻求合理的病原生物治理途径和控制方案,就显得非常重要与迫切。传统的处理技术如氯消毒和紫外线消毒等在使用过程中也都具有一定的缺点。而自Matsunaga等首次报道了TiO2/Pt在紫外光照射下具有杀菌作用的开拓性工作以来,国内外在光催化杀灭种类繁多的病原微生物方面取得了巨大的
光谱响应特性是表征太阳能电池性能的重要参数之一,对于光谱响应的研究,有助于理解太阳能电池内部电流产生、复合以及扩散的机制,并能为如何进一步提高能量转化效率提供指导。对于敏化太阳能电池这类新型太阳能电池,光谱响应通常被表述成入射单色光光子到电子的转换效率(Monochromatic Incident Photon-to-Current Efficiency,简称IPCE),虽然IPCE与光谱响应的单
本研究以电浆激发化学气相沉积(PECVD)法沉积二氧化钛薄膜,利用氬气(100 sccm)输送四异丙基钛酸酯(Ti (OC3H7)4)之蒸气,以氧气(15 sccm)当电浆激发气体产生反应,沉积二氧化钛触媒薄膜於玻璃)基板上,主要改变不同电浆电源功率(200~300 W),以提升光触媒薄膜特性,接著利用高温退火炉进后续退火处理(氧气气氛下退火500度30分鐘),退火完成后利用XRD量测薄膜之结晶性
TiO2纳米材料在太阳能的存储与利用,光电转换,光致变色及光催化降解大气和水中污染物等方面具有广阔的应用前景。TiO2纳米管的制备可以采用sol-gel模板法,化学沉积,电沉积,水热合成等方法,其中水热合成法可以稳定地合成TiO2纳米管。TiO2纳米管作为半导体光催化剂能够实现光解水制氢,因其具有比表面积高,吸附性能强等性质,其光电转化效率也较高。本文中研究了锻烧温度对TiO2纳米管光催化制氢性能
H2S是一种普遍存在、且对人体有毒、对环境危害极大的化学品,主要来自石油提炼、造纸、废水处理等过程[1].Claus process[2]是将H2S转化为水与单质硫,减少了对大气的污染.此法因需大量投入、且氢被转化为水而不经济.光催化分解H2S制氢气是一个很有希望、且相当经济的方法。该法可通过光催化剂利用太阳光将H2S转变为清洁的燃料——氢气.本文采用溶剂挥发诱导的自组装与焙烧去除模板剂、高温晶化
本文采用阳极氧化法和水热法两步法相结合,制备了钼氮共掺杂的二氧化钛纳米管阵列薄膜,研究了掺杂浓度对样品结构及性能的影响。钼氮共掺杂不仅拓宽了催化剂对可见光的吸收,而且阴阳离子补偿的共掺杂又可减少电子空穴复合中心,从而进一步提高可见光催化活性。