柔性染料敏化太阳电池基底的研究

来源 :第二届新型太阳能电池学术研讨会 | 被引量 : 0次 | 上传用户:tangzai521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
柔性DSC与传统DSC最大的区别在于采用的衬底不同,衬底的改变极大的影响了其透过性、导电性、TiO2膜的制备等,进而很大程度的改变了电池的效率.本文对可应用于染料敏化太阳电池的柔性基底PET、PEN,并且与FTO导电玻璃进了对比,得出PEN+ITO适合用于制备柔性DSC.
其他文献
我们基于引达省单元设计合成了一种平面稠环电子受体( IC-C6IDT-IC).IC-C6IDT-IC在500-800nm范围内有较强的吸收,其摩尔消光系数可达2.4×105M-1Cm-1,电子迁移率高达1.1×10-3CmV-1S-1,与给体材料PDBT-T1间有很好的吸收互补和能级匹配,基于PDBT-T1:IC-C6IDT-IC的共混薄膜展现出非常平整的表面形貌和较强的"面朝上"π-π堆积,合适
Recently,roll-to-roll (R2R) based fabrication technique,has been demonstrated as a promising method for mass production of organic solar cells (OSCs).However,most of these works were based on fulleren
将无机纳米粒子如SiO2、TiO2等作为胶凝剂添加至离子液体中使其固化形成准固态电解质,可以有效的克服液态电解质易挥发和泄漏的问题.但关于这类文献的报道大都只提高了电池的稳定性,对电池性能的改善幅度较小,甚至有些出现略有下降现象;关于纳米粒子经表面修饰后作为凝胶剂的研究也有少量报道,但是总体上研究的还不深入.
目前,氧化铟锡导电玻璃是最常用的透明电极,而具有多尺度结构的透明电极有替代它的希望.在这篇工作中,我们通过一种基于中性刻蚀气体的自上而下图案化方法,演示了一种应用于有机太阳能电池的多尺度银纳米线网格电极.通过把银纳米线薄膜图案化成多尺度网格,能大幅提高其光学透过率.基于这种多尺度银纳米线网格,我们制备了反式体异质结聚合物太阳能电池,其效率高至9.02%.此效率比基于原始银纳米线电极的更高,与基于氧
To obtain higher device performance,the ideal bulk heterojunction (BHJ) morphology should feature both nanophase separation to increase charge generation and bi-continuous percolating networks to incr
通过将SQ-BP掺入到PCDTBT:PC71BM中,制备三元太阳能电池,有效提高了电池的光电转换效率.SQ-BP的吸收光谱主要在650-750nm,其与PC71BM共混制备的二元体异质结太阳能电池表现出4.86%的光电转换效率,表明其拥有较好的光伏性能[1].PCDTBT的吸收光谱主要在350-650nm,SQ-BP的掺入有效地扩展了太阳能电池的吸收光谱,增强其吸收光子能力.
Organic photovoltaic (OPV) cells have been thoroughly investigated in the past decade owing to the advantages of low cost,flexibility,light weight,easy fabrication,semi-transparency and colorfulness,e
会议
A new approach to enhance the performance and to stabilize the active layer morphology by introducing a reacting processing additive,ditelrt butyl peroxide (DTBP) to the donor (P3HT) and acceptor (PCB
自2010年高效串联染料敏化太阳电池( tandem-DSCs)概念的提出以来[1],以p型半导体材料(p-SCs)作为光阴极的p-DSCs得到了广泛关注.但由于合适的宽带隙p-SCs的稀缺,其效率目前仍远低于n-DSCs.铜铁矿体系中的CuFeO2,具有深价带能级和较高的空穴迁移率,将其用作光阴极有望得到更高效率的p-DSCs.
合成了一组基于三苯胺和吩噻嗪为电子给子,氰基丙烯酸为电子受体的聚合物(PTPAPTZ)和小分子(TPAPTZ)染料,系统研究两者在二氧化钛上的吸附性能,通过UV-vis测试其吸附量[1-2],发现两者在二氧化钛上具有相近的吸附量,但在吸附稳定性上具有巨大的差异,小分子染料TPAPTZ在中性、弱碱性、弱酸性溶液下,在12h内基本脱附完全,而聚合物染料PTPAPTZ在同样的条件下只有部分脱附,进一步提