Weak type (1, 1) of some operators for the Laplacian with drift

来源 :Harmonic Analysis and Applications(2014调和分析及其应用学术会议) | 被引量 : 0次 | 上传用户:xiaoF123456789
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Let v =(v1,· · ·,vn)be a vector in Rn {0}.Consider the Laplacian on Rn with drift △v=∑ni=1((6)2/(6)x2i+2vi(6/(6)xi))and the measure d μ dμ(x)= e2dx,with respect to which △v is self-adjoint.Let d and ▽ denote the Euclidean distance and the gradient operator on Rn.Consider the space(Rn,d,dμ),which has the property of exponential volume growth.We obtain weak type(1,1)for the Riesz transform ▽(-△v)-1/2 and for the heat maximal operator,with respect to dμ.Further,we prove that the uncentered Hardy-Littlewood maximal function is bounded on Lp for 1 < p ≤ +∞ but not of weak type(1,1)if n ≥ 2.The uniform Lp(p > 1)dimension independent bounds and surprising O(n)weak type(1,1)bound for the centered Hardy-Littlewood maximal function are obtained.
其他文献
The local maximal inequality for the Schrodinger operators of order α > 1 is shown to be bounded from Hs(R2)to L2 for any s > 3/8.This improves the previous resu
会议
We consider Morrey-Herz spaces M ˙K α(·),λ q,p(·)(Rn)with variable exponents α(·)and p(·),and generalized Herz spaces Kα(·)q(·),p(·)(Rn)with three v
会议
A strong version of the Orlicz maximal operator is introduced and a natural Bp condition for the rectangle case is defined to characterize its boundedness.This
会议
干扰素(IFN)是针对外源病原体的先天免疫反应一个关键组成部分。干扰素在体内增加干扰素刺激基因(ISG)的mRNA水平,从而提高抗病毒活性。最新的研究表明,ISG基因之一Mx2所编码
We study Hardy Hp spaces and their duals in the framework of an arbitrary proper open subset of Rd.
会议
本论文分为长蝽总科后胸臭腺外部传输系统(external scent efferent system)的形态学研究以及长蝽总科跷蝽科中国种类的修订,分为两章。   第一章为长蝽总科后胸臭腺外部传
能够被大名鼎鼎的玛格南图片社摄影师关注,着实是令人兴奋的事情。玛格南图片社(Magnum Photos)屹立于世界摄影史上的意义不是一句“世界最具传奇色彩的图片社”就能简单概括
该文是氯乙烯(VC)原位聚合成RTUPVC(ReadytoUsePVC)的一部分.采用悬浮溶胀接枝工艺,在CPE上接枝支链PVC,以时一步提高CPE与PVC的相容性,达到PVC抗冲改性的目的.该文对CPE-g-V
近年来,光波导作为集成光学器件的基本单元,引起了国内外学者越来越多的关注。光折变表面波是在扩散机制下的光折变非线性引起的自弯曲效应,光波被约束在光折变介质表面边界狭层
经典的向量值奇异积分已得到众多数学家的深入研究,如Calderon,Zygmund,Bourgain,Burkholder 等.沿曲面(曲线)的奇异积分是经典奇异积分的推广,该类奇异积分在 Lebesgue-Boch
会议