论文部分内容阅读
为了提高三维物体识别系统的识别率,研究了将三维物体的不变矩作为物体特征,结合改进的BP神经网络应用于三维物体分类识别。
理论分析和仿真实验表明,利用三维物体的不变矩特征能够有效地进行识别,对不变矩特征进行主成分分析可以进一步提高识别性能,达到100%的识别率,并降低神经网络结构复杂性和减少训练时间。