论文部分内容阅读
缸套活塞环摩擦副是内燃机中最重要的摩擦副之一,既是由于该摩擦副的工况极为复杂且是最容易发生摩擦磨损失效的部位,又是因为该摩擦副是内燃机中是能源消耗的主要部分,因此对其进行减磨设计研究具有重要的意义。在这对摩擦副中缸套硬度远低于活塞环,且表面更为粗糙,是主要的磨损部件,需要重点研究。本文以缸套活塞环摩擦副为研究对象,以双分形分层表面理论为依据,研究了平顶珩磨缸套的表面形貌及其表征和模拟方法,研究建立了单层分形表面和双分形分层表面的接触模型,试验研究了平顶珩磨缸套表面的双分形分层特征参数随磨损过程的变化规律,构建了一定工况下用双分形分层表面特征参数计算表面平均磨损深度变化率的磨损预测模型,并应用磨损预测模型开展平顶珩磨缸套初始表面的减磨设计研究。具体内容如下:针对双工序(或多工序)平顶珩磨缸套表面具有双分形和分层特性,提出了双分形分层表面的概念,研究并提出了一种双分形分层表面的表征方法,该表征方法包括五个特征参数,即上层表面形貌的两个分形参数、下层表面形貌的两个分形参数和上层表面形貌截割下层表面形貌的一个位置参数。应用这5个特征参数可以对双分形分层表面进行有效表征。为了计算5个特征参数,基于单层分形表面的结构函数法和表面分层的特性提出了一种双分形截割分离结构函数法,该方法的基本思想是将表面形貌在均值处截割并分离为上下两层,然后分别用结构函数法计算其分形参数,并用迭代法计算截割位置参数。为了获得双分形分层表面形貌的数据,根据这种表面的形成过程,提出了一种双分形分层表面轮廓的模拟方法。即用一个分形函数模拟出表面的下层轮廓,用另一个具有较大分形维数和较小轮廓高度的分形函数模拟出表面的上层轮廓,并用模拟的上层轮廓在一定的位置截割下层轮廓,最终获得模拟的双分形分层表面轮廓。通过对特征参数已知的表面以及平顶珩磨缸套磨损前后的表面进行模拟,阐述了采用双分形分层表面模拟方法的模拟过程,并通过对比模拟表面和原始表面的粗糙度参数以及材料比曲线,验证了模拟方法的有效性。用本文提出的模拟方法得到的双分形分层表面轮廓可以用于表面的接触、磨损等问题的研究。为了研究平顶珩磨缸套的磨损预测和减磨设计,建立了单层分形表面和双分形分层表面的全尺度接触模型。首先针对现有单层分形表面接触模型的不足,提出了一种考虑接触摩擦影响的修正的全尺度单层分形表面接触模型。在该模型中与经典接触力学相违背的单个微凸体的接触模型被修正,区分不同长度尺度下微凸体变形状态的临界弹性尺度和临界塑性尺度不随载荷变化的问题也得到修正,同时也考虑了分形粗糙表面上的微凸体受到法向载荷时产生的指向微凸体中心线的接触摩擦力的影响因素。由于双分形分层表面的上层表面的微凸体是主要的发生接触的部位,可以借用单层表面的微凸体接触模型,下层表面主要提供了上层表面微凸体分布的有效面积,即上层表面截割下层表面得到的截割面积,因此通过在截割面积上对上层表面微凸体所产生的载荷和面积等进行积分就得到了双分形分层表面的全尺度接触模型。为了研究平顶珩磨缸套表面的特征参数随磨损过程的变化规律,在一台具有往复运动模块的摩擦磨损试验机上进行了缸套活塞环不同工况下的磨损试验。通过不换试样连续试验(中间停机在线测量表面形貌)和更换试样并逐步加时试验(离线测量表面形貌)两种方式获得不同磨损阶段的表面轮廓。为了对比,除了计算双分形分层参数还用结构函数法计算了单层分形参数。研究发现上层表面形貌的分形维数随磨损过程的变化较为明显,即在磨损的初始阶段快速变大并在磨损一段时间后趋于稳定,因此该参数很适合研究磨损过程中表面形貌的演变规律。另外还发现载荷越大上层表面的分形维数变化越快,趋于稳定阶段的值也越大。为了能够用不同磨损阶段的平顶珩磨缸套表面的双分形分层特征参数对当时的平均磨损深度变化率进行预测,首先基于修正的单层分形表面接触模型,提出了单层分形表面磨损预测的修正模型;进而以该修正模型和以双分形分层表面的接触模型为基础,建立了一个双分形分层表面的磨损预测模型。应用此预测模型分析了不同的双分形分层表面的特征参数对平均磨损深度变化率的影响。分析表明,存在着与较小平均磨损深度变化率相对应的各个特征参数的区间,因此只要将摩擦副最终加工表面的特征参数控制在此区间内,就可以获得较小的初始磨损阶段的平均磨损深度变化率。为了实现平顶珩磨缸套表面的减磨设计,既期望获得较小的初始磨损阶段平均磨损深度变化率使得摩擦副尽快进入正常磨损阶段,又期望当磨合过程结束,以最小或尽可能小的平均磨损深度变化率进入正常磨损阶段。基于双分形分层表面的磨损预测模型给出了减磨设计的方案,将平顶珩磨缸套上层表面截割下层表面形貌的位置参作为变量,将工况参数及其他特征参数作为常量,建立平均磨损深度变化率随截割位置的变化关系,找到对应较小平均磨损深度变化率的初始表面的截割位置参数区间。在该区间范围内,定做了四个具有不同参数值的缸套进行相同工况下分段试验,测量磨损过程中的表面形貌并计算特征参数,再用磨损预测模型计算各个时间段的平均磨损深度变化率,发现这四个缸套都能相对较小的平均磨损深度变化率进入正常磨损阶段,验证了减磨设计模型的有效性。该论文有图59幅,表23个,参考文献194篇。