基于小样本学习的入侵检测算法研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:a351200
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网技术和产业的不断发展,如何保障网络接入设备的安全已经成为一个重要的议题。入侵检测系统可以很好地区分网络连接中的正常和异常行为,是保障网络安全的一个重要手段。然而现在的网络入侵方式往往使用多种机制来伪装攻击并逃避检测,这对入侵检测系统提出了新的挑战。
  虽然有许多来自机器学习和模式识别领域的监督和无监督学习算法已经被用于提高入侵检测系统的效率,但是它们还是存在一些问题。无监督学习的算法不需要大量的已标记数据,然而其检测的效果不佳。监督学习算法的检测效果要优于无监督学习,但是监督学习的算法需要使用足够的标记的样本来训练分类器,要获取足够的训练标记样本耗时耗力。监督学习的另一个问题是在现实的网络中,异常的网络连接行为发生的频次必然会远小于正常的网络连接请求,这就导致了已标记的样本中异常类别的数据稀少,所以即使获得了足够的标记样本,也可能因为异常类别的样本量稀少而导致算法模型检测效果不佳。
  小样本学习是机器学习的一种特例,它旨在仅使用少量有限的样本进行学习并达到一个好的学习效果。为了解决网络检测中样本难以获得和异常样本量不足的问题,将小样本学习算法思想应用到入侵检测系统中。本文使用基于度量学习的小样本学习模型,在NSL-KDD和UNSW-NB15入侵检测数据集上验证了模型的检测效果。
  同时为了提高最终算法模型的检测效果,本文将人脸识别中的损失函数应用到算法模型中,实验结果表明,和其他算法模型相比,基于小样本学习的算法模型使用最少的数据,但是检测效果超过了别的算法的检测准确度和检测率。
其他文献
随着智能手机和移动应用技术的发展,活动社交网络越来越流行。在ENSN中,人们可以在线上提前发布组织、线下参加各类活动。然而,由于人们可以自由地在线点击加入活动,其实际线下出席行为通常与线上有所不同。因此,如何对活动的实际出席情况进行准确预测,对活动组织者及活动开展具有重要的指导意义。
  已有的活动社交网络中进行出席预测的研究存在着如下几个问题。1.特定活动的预测精确度低,例如室外活动;2.忽视了活动本身之外的相关因素,例如活动举行当天的天气因素;3.部分活动内部因素尚未挖掘,影响人们出席活动的因素
许多现实生活中的应用都受到类不平衡问题的困扰,如医疗诊断和金融危机预测。在这些应用中,目标往往是代表性不足的类别。然而,经典的分类模型考虑的是类别平衡的情景,如决策树模型和贝叶斯模型,将这些模型应用于类别不平衡的场景会导致结果出现偏斜。现有的研究主要关注于二类不平衡问题,但与两类情况相比,多类不平衡问题要困难得多,这是由于决策边界涉及到多个类之间的区分。大量针对二类不平衡问题的解决方案并无法直接应
时序预测是深度学习应用领域研究中的热点问题。捕捉时序数据间复杂的关联特性是实现精准预测的关键。目前研究未能针对性给出以下问题的解决方法。具体的,如何处理数据集上多个非预测时间序列在不同时间阶段对目标序列产生的不同程度的影响;时序数据中蕴含的突变现象会显著的影响标签序列的变化规律,如何通过预测方法学习到历史数据中的这些信息。在先前多数研究中,通常仅从神经网络模型角度设计预测方法,而目标函数和优化算法中完全忽略了随时间变化的信息。
  本文从时序预测的目标函数、神经网络模型和帮助模型在迭代训练中收敛的优
近年来,深度神经网络在解决各种机器学习问题和应用方面取得了重大进展。然而,这一显著进步得益于大规模下可用的带标签数据。通过手工标记足够的训练数据用于特定应用任务上通常是不可取的,在缺乏标记数据这一问题上,亟需设计出通用的算法以减少在人工标记上的消耗。领域自适应方法能够应用机器学习方法针对一个分布中采样的数据进行训练,并将其应用于另一个分支中采样的数据,其核心是适应不同域的数据分布变化。但是,在实际应用场景中,一方面,通常很难做到源域与目标域的标签空间是一致的,另一方面,存在着因源域对应空间下的数据量稀少而
[摘 要]目前,以xM00C为主的高等教育慕课数量不断增长、应用规模不断扩大。文章针对慕课教学设计中存在的教学阶段划分与衔接不够明确、课程资源缺乏系统梳理、学习情境相对单一等问题,提出基于首要教学原理进行慕课教学单元、教学阶段和学习情境的设计,并以学银在线供应链管理课程为例进行了具体说明。   [关键词]慕课;教学设计;首要教学原理;供应链管理   [中图分类号]G434 [文献标识码]A
期刊
随着网络和移动设备的发展,越来越多的应用技术需要更高的网络带宽和稳定的服务质量。多宿主技术使移动设备能够配备多个网络接口,设备可以同时连接多个不同网络。设备使用多路径传输控制协议(Multi-Path TCP,MPTCP)可以聚合LTE网络和WLAN网络,充分使用移动设备的多个网络,提高数据传输率,保证数据传输的鲁棒性。
  但是在基于端到端网络模型中,客户端和服务器之间的无线链路网络状态通常不可预测。许多原因导致网络条件不稳定,主要表现为包丢失、带宽抖动和高延迟变化等,最终导致在多路径传输中数据包
随着互联网的发展,网络上产生了大量的文本数据,而如何快速地对这些文本进行分类是一个亟待解决的问题。传统的机器学习算法在文本特征提取上能力有限。近年来,随着深度学习算法的快速发展,文本语义信息的提取更加精确、完善,从而为文本分类性能的提升奠定了坚实的基础。目前,处理多标签文本分类比较常用的是SequencetoSequence模型,即利用编码器抽取文本特征,再利用解码器顺序输出文本的多个类别。与其它深度神经网络模型相比,Seq2Seq模型自带的注意力机制能够很好地突出文本中的关键信息,从而提升了模型的分类效
目标检测是计算机视觉领域最经典的任务之一,近年来基于深度神经网络的目标检测算法的研究取得了显著的突破。然而,深度学习目标检测算法需要对大量有标注数据的训练以获得更高的性能,而实际应用中有标注资源往往是稀缺的,大量的无标注数据需要人工对其进行标注。然而,人工标注通常是一个非常耗时、困难且成本高的过程。主动学习通过衡量和评估未标注样本所含有的信息量,挑选信息量最丰富即对模型训练最有利的样本进行人工标注,以实现仅对少量样本标注训练即可达到较高的模型性能,从而大幅提升人工标注效率,减少人工成本。本文的研究将针对在
随着互联网的快速发展,人们在网上活动越来越多,产生的数据量也在飞速地增长。海量的数据带来了严重的数据存储和处理问题。为了解决海量数据的计算和存储问题,云计算和云存储应运而生。为了获得巨大的存储空间和高性能的计算,越来越多企业和个人将自己的数据被外包到云端管理系统中。可是数据外包提供低成本存储和高效率计算的同时也带来了隐私泄露的问题。大量的数据暴露在云服务器端。恶意的管理者可以轻易地窥探数据所有者的隐私,从而损害数据所有者的利益。如果将数据完全加密再存储到云服务器,虽然可以避免隐私的泄露,但云服务器无法直接
随着智能辅助驾驶及自动驾驶系统的发展,复杂道路场景下基于视觉的车道线检测已成为热点研究课题。现有的车道线检测算法分为两大类,一类是基于传统图像处理的算法,另一类是基于深度神经网络的算法。第二类算法的准确性比第一类算法更高,但是也存在两个问题。(1)在复杂道路场景下,准确性会下降,主要原因是:深度神经网络的实际感受野远小于理论感受野;神经网络在推断时容易被无关的信息干扰。(2)深度神经网络算法在运行