【摘 要】
:
两相流广泛存在于电力、环保、化工、冶金和核能等国民经济行业中,特别是在冶金、电力等行业,在炉、窑对煤粉的输送过程中,若煤粉浓度偏高,将导致燃烧不充分或引起偏火,而煤粉浓度偏低将会直接影响生产效率和产品质量,因此对生产过程的计量和安全监控具有非常重要的意义。电容层析成像(Electrical Capacitance Tomography,ECT)技术利用放置在被测管道或容器周围的传感器阵列,获得不同
论文部分内容阅读
两相流广泛存在于电力、环保、化工、冶金和核能等国民经济行业中,特别是在冶金、电力等行业,在炉、窑对煤粉的输送过程中,若煤粉浓度偏高,将导致燃烧不充分或引起偏火,而煤粉浓度偏低将会直接影响生产效率和产品质量,因此对生产过程的计量和安全监控具有非常重要的意义。电容层析成像(Electrical Capacitance Tomography,ECT)技术利用放置在被测管道或容器周围的传感器阵列,获得不同观测角度下被测非导电物场的投影数据(即电容的测量值),通过适当的图像重建算法,重建出被测物场内的介质(介电常数)分布。该技术具有响应快、成本低、适用范围广、安全无辐射等优点,两相流检测通常应用电容层析检测技术。本文主要针对基于气固两相流传的ECT感器结构参数展开探讨和研究。论文主要工作如下:(1)针对ECT传感器的极板张角进行分析,通过对十二极板ECT传感器不同极板张角的情况下的仿真分析确定了最优的极板张角。(2)提出一种加入内置电极的ECT传感器结构,详细介绍了内置电极的该传感器的工作原理和电容选取方式。并通过仿真分析极板间距、内电极宽度等结构参数,最终确定了最优电极尺寸。(3)将加入内置电极的ECT传感器与传统十二极板ECT传感器进行对比分析。通过对五种不同流型的仿真实验表明,具有内置电极的ECT传感器中心区域灵敏度更高,重建图像效果较好、相对图像误差值也均优于传统十二极板传感器。
其他文献
在现阶段的高中语文教学过程中,部分语文教师受到传统观念的影响,并不注重从学生的角度,也不注重从教学方法的方面入手,开展相应的高中语文高效课堂的构建,从而导致学生的语文学习积极性被严重消磨,而构建高中语文高效课堂便成为空谈了。针对这种状况,高中语文教师应深入研究新课改背景,并在此基础上,结合学生的实际语文学习能力,灵活设定相应的教学方式,最终达到构建高中语文高效课堂的目的。
目的 探讨川崎病(KD)发生冠状动脉瘤(CAA)的危险因素。方法 回顾性分析2020年1月至2021年12月住院确诊KD患儿的临床资料。根据有无CAA将患儿分为CAA组和非CAA组,比较两组间临床特征,分析影响CAA发生的危险因素和相关指标及预测KD并发CAA的价值。结果 纳入KD患儿557例,男346例、女211例,中位发病年龄25.0(13.0~45.2)月,并发CAA 75例(13.5%),
板式换热器是通过一系列具有波纹形状的金属板片进行换热的装置。在生产板式换热器板片过程中,板片因重力冲压作用致使表面产生缺陷,当板片投入使用时,缺陷位置将无法承受注水后的压力而开裂,存在安全隐患。目前人工抽检与渗透探伤法是常用于板式换热器板片上的缺陷检测方法,但此类方法检测效率低,且受检测人员主观因素影响。随着人们对机器视觉应用地深入探索,根据板式换热器板片表面缺陷特征,以及基于对缺陷所处区域的了解
随着国民经济的快速发展和人民生活水平的显著提高,越来越多的人选择购买私家车,汽车数量的增加导致交通事故频发,造成大量财产损失和人身伤害。在造成交通事故的众多原因之中,疲劳驾驶占有很大的比重。因此,研究一种有效的驾驶员疲劳检测方法具有重要意义。本文查阅了大量相关文献,比较了三种常用的疲劳驾驶检测方法,选择了基于人脸特征的疲劳驾驶检测方法,该方法不会干扰驾驶员,且检测精度高。基于单一疲劳特征判断疲劳程
雷雨大风是一种影响较大的灾害天气,对整个国民经济能够产生严重的危害。目前气象领域使用机器学习方法来预测雷雨大风天气的场景少之又少,大多数都是研究雷雨大风的形成过程,而针对雷雨大风的预测往往需要专业人员结合专业知识进行预测,过度依赖专业知识,其预测效果也不理想。因此本文充分利用气象历史数据,研究了一种基于机器学习的天气预测方法。本文分别采用美国气象环境预报中心获取的全球化气象数据和某省地面观测站的实
随着大数据时代的不断发展,隐私保护已成为现代数字化社会需要面临的重要问题之一。当用户与在线服务提供商交互时,需要提供所需的身份信息来进行认证。然而,恶意的服务提供商会过度收集用户的个人信息,将用户身份数据与其行为数据相关联并对用户进行大数据定位,从而导致用户隐私信息的泄露。匿名认证技术的提出解决了传统身份认证隐私泄露的问题,即用户可以根据服务场景要求,提供相应发行方为其发布的匿名凭证证明自己有资格
生物特征识别技术是指利用人类个体之间的生理特征或者行为特征的差异对个体身份进行识别的技术。近年来,随着计算机运算能力的快速提升和信息数据爆发式的增长,基于深度神经网络的新一代人工智能技术正在被广泛地应用在生物特征识别领域。步态识别是一种新型的生物识别技术。与指纹、人脸、虹膜等对输入数据质量要求较高的识别技术不同,步态识别对输入数据的质量要求很低,录入时不需要特殊的设备,使用普通监控摄像头即可进行。
在全球信息化的大背景下,工业高速发展,旋转机械设备发展方向趋于结构复杂化、过程自动化、操作智能化。齿轮因其承载能力大、传动效率高等优点广泛应用于现代设备中,如航空、采矿、农业机械、军事装备和冶金机械等领域。齿轮是设备运行中故障率较高的传动部件,齿轮故障将直接影响整机的可靠运行,降低整个设备的效率和精度,甚至造成不可逆的严重后果。因此,开展齿轮故障的诊断识别具有重大意义。声发射检测是一种无损检测技术
信息隐藏被视为保障数据安全的重要手段。图像是最常见的一类数据媒体,在网络上广泛传播具有一定安全隐患,同时,也存在一些特殊应用场景,如需要在图像中嵌入URL等其他信息,这使得图像隐写技术受到研究者的更多关注。部分研究对隐写容量和鲁棒性等问题进行了探讨,但生成的载密图像质量不稳定,部分载密图像在低频区域有明显的改动痕迹,处理后的图像模糊,质量低,与载体图像差距较大。本文以生成高质量的载密图像为研究对象
与CT、超声等医学图像相比,病理图像能提供更多有效的诊断信息,故被广泛地应用于临床诊断和医学研究中。在传统的肺部细胞病理学诊断过程中,由于病理医生资源的短缺以及不同肺部疾病的异常细胞形态和排列结构的复杂性,均导致了肺类疾病诊断时误诊率的上升。因此,有助于降低误诊率的肺部细胞病理图像辅助诊断系统具有十分重要的研究意义,而肺部异常细胞的准确分割作为该系统最为关键的一步,在现有的研究中并未被很好地实现。