论文部分内容阅读
在大数据时代背景下,云计算得到了广泛的关注和应用。随着云计算不断的发展,同时受到完工时间和成本等因素约束的科学计算流程和商业流程等应用流程日趋复杂。以往的云计算应用/软件已经不能满足企业和用户的需求。在此背景下,云工作流系统作为一个切实有效的解决方案被提出。云工作流系统能够对复杂的工作流程进行抽象定义,为用户提供了便利。如何在云环境下部署工作流任务成为新的研究对象。任务调度是云工作流最重要的核心技术。由于云计算的以用户为中心,按需提供服务,商业性和异构环境等特性使其必须关注用户的服务质量和云服务提供商的收益。相比于云环境下常规作业的调度问题,云工作流调度不但需要考虑服务质量(如时间、成本等因素)的约束,还需要受到工作流内各个任务之间依赖关系的约束,此外,各个任务所产生的中间数据也是调度必须要考虑的因素之一本文针对云工作流的特点,提出了一种多目标粒子群云工作流调度策略MOPSO(Multi-objective Particle Swarm Optimization)。该策略同时权衡成本和时间,在尽量满足用户服务质量的前提下,减少总的执行成本和完工时间。本调度策略从用户角度考虑工作流调度问题,对一个工作流实例可以返回含有多个工作流调度方案的集合,该调度方案集合是一个Pareto最优解集,可以根据用户的偏好选择一个最佳的调度方案。为了进一步提高多目标粒子群算法的性能,本文提出一个结合启发式局部搜索和多目标粒子群的混合算法HCMOPSO(Hill Climbing with Multi-objective Particle Swarm Optimization)。该算法可以获得目标值更优的Pareto最优解集并且可以更加快速地收敛。通过对仿真平台WorkflowS im进行扩展,在扩展后的仿真平台上对真实环境中的工作流应用进行模拟并在此基础上将本文提出的调度策略与Min-Min、Max-Min和HEFT调度算法进行对比实验。实验表明,本算法可以在短时间内获得一个Pareto最优解集,该解集中的解在时间优化方面表现突出并且大量节约了虚拟机租用和数据传输的成本。