论文部分内容阅读
土壤重金属污染具有隐蔽性、持久性、不可逆转性的特点,已成为危及生态环境和人类健康的全球性关键问题。据2014年全国土壤污染状况调查公报显示,广泛分布的土壤污染总超标位点达16.1%,尤其以共存的重金属Cd、Pb、As的复合污染最为严重。由于Cd、Pb常以二价阳离子的形态存在,而As则有三价、五价两种形态的含氧阴离子,通过改变土壤理化性质进行修复的过程中,三种污染物的移动性和生物有效性往往无法同时降低。因此,研发廉价、高效、稳定、安全的原位钝化剂改变土壤中Cd、Pb、As迁移转化的过程,从而减少三者在土壤-作物系统中的富集迫在眉睫。天然沸石是成本低廉的水合铝硅酸盐矿物,能改善土壤理化性质及结构、吸附固定阳离子重金属。纳米零价铁具有较大的比表面积和阴离子吸附容量,能与污染物发生氧化还原反应。利用沸石负载纳米零价铁将有可能同时应对土壤中的Cd、Pb、As污染。本研究首先制备了纳米零价铁改性沸石(简称改性材料),以天然沸石为参照,通过水溶液吸附试验验证其对Cd、Pb、As复合污染的吸附效果及特性;采用土壤培养试验研究不同水平改性材料对复合污染的酸性红壤、碱性潮土中土壤理化性质及重金属钝化效果的影响;利用改性材料的磁分离特性将其从各试验系统中回收,运用先进表征技术明确钝化机制;研究不同施用时间及水平的改性材料对土壤微生物群落结构及部分功能基因表达的影响;开展盆栽试验探讨改性材料对作物重金属吸收及生理生化指标的影响。研究结果为新型材料纳米零价铁改性沸石在重金属复合污染农田土壤中的潜在应用价值提供了重要的理论依据。主要结果如下:(1)纳米零价铁改性沸石对水体Cd(Ⅱ)、Pb(Ⅱ)、As(Ⅲ)吸附的研究。利用简化的液相还原法制备并表征改性材料,通过0.3 g/L的添加比例探究改性材料对水溶液中Cd(Ⅱ)、Pb(Ⅱ)、As(Ⅲ)单一及复合污染物的吸附特性。扫描电镜及傅里叶红外光谱表明,纳米零价铁成功分散在沸石骨架上,而沸石表面变得更粗糙多孔隙;改性材料含有大量Si-OH、Si-O-Fe、Fe-OH、Fe=O等表面基团,为重金属吸附提供活性位点。在溶液p H为6,振荡10 h条件下改性材料达到最佳吸附,等温试验最大吸附容量为48.63 mg Cd(Ⅱ)·g-1、85.37 mg Pb(Ⅱ)·g-1、11.52 mg As(Ⅲ)·g-1,对比沸石吸附容量(22.88 mg Cd(Ⅱ)·g-1、32.23 mg Pb(Ⅱ)·g-1、0 mg As(Ⅲ)·g-1)得到显著提升。污染物对改性材料吸附竞争能力排序为Pb(Ⅱ)>As(Ⅲ)>Cd(Ⅱ),能在其表面生成多层络合物,且协同与竞争作用共存。(2)纳米零价铁改性沸石对土壤理化性质及重金属有效性的影响。在自然污染的农田土壤(酸性红壤、碱性潮土)中添加0、10、30 g·kg-1沸石与改性材料,通过1-180天的土壤培养试验研究两种复合污染土壤的理化性质、重金属有效性及形态分布变化。结果表明,10-30 g·kg-1沸石对土壤理化性质无显著影响;30 g·kg-1改性材料处理显著提高两种土壤p H,显著降低酸性红壤EC,并在培养初期显著降低两种土壤DOC(P<0.01)。改性材料兼具p H调节和吸附剂的优势,添加后固定土壤DOC并减少其分解,使土壤维持较高p H和较低EC,有利于降低重金属移动性。培养至180天,30 g·kg-1改性材料处理显著降低红壤、潮土中10.2-96.8%的有效态Cd、Pb、As含量(P<0.05)。重金属形态分布结果证明,改性材料使部分土壤Cd、Pb、As从弱酸提取态转化为更稳定的可还原态和残渣态。总的来说,改性材料能在长达180天内同时固定污染土壤中的Cd、Pb、As,但在碱性潮土中的效果及稳定性优于酸性红壤。(3)纳米零价铁改性沸石对Cd、Pb、As的吸附及固定机理研究。采用磁分离将改性材料从复合污染水体、土壤中回收,通过表征技术研究各污染物在材料表面的矿物相及元素价态变化,研究其钝化机制。X射线衍射及X射线光电子能谱的表征结果表明,B型三元络合、多相共沉淀、氧化还原反应在Cd、Pb、As、Fe之间同时发生,如Cd3(As O4)2、Pb Fe2(AsO4)2(OH)2、Pb0等难溶相的生成。首先,污染物通过替代Si-OH/Fe-OH/O-H,吸附富集于改性材料表面的铝硅酸盐和铁氧化-氢氧化物上;其次,由环境p H、标准电极电势决定As(Ⅲ)、As(Ⅴ)、Pb(Ⅱ)的氧化还原反应;最后,改性材料的次生矿化为已固定的重金属提供了催化界面,促使形成更稳定的多相矿物实现污染物封存。(4)纳米零价铁改性沸石对土壤微生物群落结构及功能的影响。通过1、15和180天土壤培养试验,提取土壤DNA和RNA,结合16S r DNA高通量测序、实时荧光定量PCR及生物信息学分析方法,研究两种复合污染土壤中环境因子、改性材料、土著微生物之间的交互效应。整个培养周期内,10-30 g·kg-1改性材料对土壤细菌群落丰度及多样性指数影响不显著(P>0.05),可排除材料广谱微生物毒性。与空白相比,添加改性材料可引起细菌群落结构短暂的明显变化(1-15天),其中铁氧化菌、铁敏感菌、嗜酸菌、反硝化菌、重金属耐性菌等优势属的相对丰度变化最大,但最终在培养时间尺度下各处理间差异消失,即土壤本身特有的环境因子才是真正驱动土著细菌群落重建的关键因素。改性材料固定土壤重金属并提供电子源,提高了土壤细菌中编码DNA复制和反硝化作用的功能基因表达,整体提升微生物功能活性。(5)纳米零价铁改性沸石对作物重金属吸收及抗氧化胁迫的影响。选取两种复合污染农田土壤(酸性红壤、碱性潮土),在0、5、15 g·kg-1沸石与改性材料的添加水平下,种植低、高积累青菜品种进行盆栽试验,探究改性材料对青菜品质及生理功能的影响。5g·kg-1改性材料对土壤理化性质和重金属毒性的改善使青菜生物量显著增加14.7-18.1%(P<0.05),其中低积累品种重金属含量可满足食品安全标准。添加改性材料可显著提高青菜中Ca,Fe含量(P<0.05),有利于重金属的吸收抑制及细胞壁固定等过程,与改性材料在亚细胞水平上降低细胞器重金属比例和含量的发现一致,从而促进青菜生理代谢功能。5 g·kg-1改性材料对青菜养分含量的改变可提高其抗氧化物质的活性和含量,以缓解重金属引起的氧化损伤;15 g·kg-1改性材料导致酸性红壤中Fe含量过高,从而加剧青菜抗氧化系统失衡。综合考虑改性材料对青菜的品质、生理功能及人体健康风险的影响,施用5 g·kg-1改性材料并种植低积累品种是本试验中实现污染土壤安全生产的最佳组合,应用成本仅为2336¥·ha-1。本研究制备的纳米零价铁改性沸石克服了沸石和零价铁各自的缺陷,在试验培养周期内能通过多种吸附、固定机制同时稳定钝化污染农田土壤中的Cd、Pb、As,降低其移动性和有效性,且对土壤微生物群落无显著不利影响,提升了微生物功能活性;该材料的适量添加可降低青菜中的重金属含量和毒性胁迫,提升其品质和生理功能,实现安全生产。本研究结果可为纳米零价铁改性沸石对Cd、Pb、As复合污染农田土壤的安全利用提供科学支撑和理论依据,具有较好的潜在应用价值。