【摘 要】
:
一直以来,大脑被认为是一个结构和功能极其复杂的系统,大脑区域的细胞结构和连接每隔几毫米就会发生显著变化。脑功能性疾病的发生往往与多个大脑区域的异常放电、神经元丢失或神经回路的紊乱有关。经颅聚焦超声神经调节和刺激作为一种新兴的治疗技术,其空间特异性、非侵入性、穿透性等特点,为脑功能性疾病的治疗提供了一种潜在的解决方案。然而,现有的研究大多集中于对大脑神经元的单靶点刺激,使用的超声换能器为单阵元聚焦换
【基金项目】
:
广东省“珠江人才计划”引进创新创业团队项目(2016ZT06G375); 国家自然科学基金(51975131);
论文部分内容阅读
一直以来,大脑被认为是一个结构和功能极其复杂的系统,大脑区域的细胞结构和连接每隔几毫米就会发生显著变化。脑功能性疾病的发生往往与多个大脑区域的异常放电、神经元丢失或神经回路的紊乱有关。经颅聚焦超声神经调节和刺激作为一种新兴的治疗技术,其空间特异性、非侵入性、穿透性等特点,为脑功能性疾病的治疗提供了一种潜在的解决方案。然而,现有的研究大多集中于对大脑神经元的单靶点刺激,使用的超声换能器为单阵元聚焦换能器,无法灵活控制焦斑大小和位置,以及实现多靶点的超声刺激。因此,为了推进多靶点超声刺激的研究,本课题针对动物模型,设计二维功率阵列换能器,开发多靶点经颅超声相控系统,为评估多靶点超声刺激治疗方案的可行性提供一个有效的研究平台。本课题的主要研究内容如下:(1)基于多模态成像的人类头颈部模型,构建具有复杂解剖结构的颅骨和非均匀的脑软组织声学模型。通过三维声学模拟,优化设计阵列换能器,并仿真超声波在人类颅脑中的传播过程,研究颅骨和脑软组织对声场分布的影响。同时,通过比较流体模拟和弹性模拟两种情况下的声场分布差异,评估模态转换和横波衰减对声场的影响。(2)考虑大鼠头盖骨体积和厚度等特点,确定换能器类型、中心频率、阵元大小和数目,测量换能器各层声学材料的声学属性,研制二维功率阵列换能器。为了驱动功率阵列换能器,设计基于FPGA的多通道脉冲驱动系统,以满足输出功率和延时控制精度要求。通过阵列换能器、多通道脉冲驱动系统、水听器采集系统搭建多靶点经颅聚焦超声体外声场测试系统。(3)通过数值模拟,研究不同焦斑数量、不同轴向聚焦距离和不同焦斑中心间距对聚焦声场特性的影响,包括最大峰值声压、主瓣与旁瓣的幅值比和峰值位置的偏差。结果显示,多焦斑的声场由于各焦斑能量的叠加和焦斑体积大小的不同,表现出比单焦斑声场更为复杂的聚焦特性。产生两个-6 d B焦斑的最小距离与焦斑轴向聚焦位置呈正相关关系。不同轴向聚焦位置下,各个焦斑的中心间距与声场特性的相对变化关系相似。(4)为了评估换能器的声学性能,使用光纤水听器测量二维功率阵列换能器聚焦声场的分布。结果显示,阵列换能器能够在水域中产出良好的聚焦效果,最大峰值声压和空间平均强度分别为2.21 MPa和133 W/cm2。同时,对比体外颅骨声场测量实验和仿真结果,发现实验测量的峰值位置和焦斑形状与模拟结果趋于一致,验证了超声系统能够在颅内三维空间同时产生多焦斑,并精确控制焦斑位置的能力。最后,对大鼠进行了体内刺激实验,并通过H&E染色对脑切片进行组织学分析,证明了多靶点经颅聚焦超声相控系统不会对大脑造成损伤或明显的出血。
其他文献
泛函微分方程理论在现实生活中有着重要的理论和应用价值,脉冲随机微分方程和时滞随机微分方程解的稳定性更是引起了许多研究者的研究兴趣.本文通过运用不动点理论方法、Lyapunov稳定性定理和线性矩阵不等式,分别对一类脉冲随机微分方程和一类时滞随机微分方程解的稳定性进行研究,得到了这两类方程解稳定的准则.全文的内容结构安排共分为三章.第一章简要叙述了脉冲随机微分系统和时滞随机微分系统研究的意义和发展概况
Riccati方程自从提出以来,一直受到很多学者的关注.发展至今,方程解的存在性不断得到完善.其中算子Riccati方程定义为XAX+XB-CX-D=0,其中A,B,C,D是在Hilbert空间上的具体算子.本文将从两个方面去研究Riccati方程.第一,探讨在Bergman空间上的且满足Riccati方程的Toeplitz算子.而且还研究了不变子空间和特殊形式的Riccati方程XAX+AX=0
生态位构建是指生物体通过自身活动、代谢等行为来调节或者影响自身生存环境或其他生物与非生物环境中的有机体进化的过程,其主要作用机制是通过环境和有机体之间的相互反馈来影响进化过程.生态位建立理论的出现为解释不同尺度下的生态学现象提供了一种新的有效的机理和模式.本文基于目前国际上分析物种进化入侵的常用方法进化分布动态模型,着重探讨了特征依赖下的两类不同生态位构建作用模式对具有种内资源竞争的物种进化动态的
本文研究了一个带坏死核肿瘤生长的数学模型和浅水波模型.通过严格的数学分析,研究了相应问题的定性分析.第一部分是绪论,分别介绍了带坏死核肿瘤生长的数学模型和浅水波模型的研究背景和研究现状.第二部分研究了具有坏死核的血管生成肿瘤生长Robin自由边界的数学模型,用严格的数学分析方法,证明了模型稳态解的存在唯一性和解的渐近性态.在本章研究过程中,改进了方法,为后续研究此类问题的方法提供了一点思路.第三部
对高维数据进行数据挖掘是机器学习的研究热点.面对“维数灾难”的难题研究者提出不同的解决方法,其中稀疏子空间聚类算法是解决这一问题的有效途径.高维数据普遍具有稀疏性,高维性,噪声性等性质.高光谱遥感影像数据是典型的高维数据,对高光谱图像进行聚类有利于实现地物的划分、勘测,从而实现人们通过技术感知远方地物.高光谱遥感影像的光谱数据,由数百个连续且窄的光谱波段组成,且波段之间存在较强的相关性.因此,在实
随着越来越多的领域开始应用机器人以及机器视觉技术的蓬勃发展,机器人能够完成的自动化、智能化的任务也越来越多。在面对小批量,多种类零件的拾取放置需求时,针对零件做特定夹具,或者制作特定生产线会使得工厂的生产成本变高,于是基于视觉的工件智能识别定位技术的研究成为必要趋势。本文以RGB-D相机为视觉信息来源,针对汽车五金件的识别定位问题,对基于模板匹配的物体识别,基于点云配准的位姿估计,以及基于点云的非
高代价优化问题广泛出现在实际工程应用设计中,它们是具有计算代价昂贵、运算速度慢等昂贵评估特征的,且具体数学表达式未知的一类黑箱优化问题.代理辅助的进化算法(SAEAs)通过借助计算成本较低的代理模型来部分替代具有高昂代价的函数评估,能有效降低高代价优化问题的求解成本,是解决该类问题的重要方法之一.针对高维高代价优化问题,本文分析了两个常用的代理模型(RBF模型和Kriging模型)分别作为全局模型
随着微纳米技术的快速发展,超精密定位技术已经成为各个相关领域高精尖技术的重要组成部分,其定位精度的提高足以影响相关领域的发展.压电陶瓷驱动器是超精密定位领域里最为理想的驱动元件之一,克服了传统的驱动器的一些不足,具有体积小、质量轻,驱动力大、控制精度高、响应速度快,功耗低等优点,因而成为应用最为广泛的驱动元件之一.在半导体制造、生物医学、航天航空等高科技领域中得到了广泛的应用.但是压电材料本身存在
随着芯片体积越来越小,焊点间的距离日益缩短,这对芯片封装设备中运动平台的定位精度、鲁棒性等运动性能提出了更高的标准。然而,精密XY运动平台是非线性、强耦合的系统,其数学模型往往是不确定的,受干扰的影响程度也是未知的。当系统发生内部参数摄动或受到外界干扰影响时,传统的滑模变结构控制器鲁棒性不强,难以获得满意的性能。而自适应滑模变结构控制因引入自适应控制方法,使系统在抗干扰与抗参数摄动等方面的能力大大
连续体结构拓扑优化是工业设计中的重要优化方法之一,其通过有限元方法构建了优化对象的力学拓扑关系,具有算法成熟、简便等优势。然而有限元方法的力学响应分析计算精度受限于网格规模,连续体结构拓扑优化在小规模网格下的优化结构的刚度性能不佳,虽然增大网格规模可得到刚度性能更好的优化结构,但由于网格依赖性问题,优化结构的细小分支增多,可制造性很差,不符合实际的生产需求。为进一步提高连续体结构拓扑优化的刚度性能