类石墨相氮化碳基复合材料的制备及其可见光催化性能研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:dcf0124
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前,制约人类社会发展的主要问题之一是环境污染,光催化技术是一种在环境保护方面具有广阔应用前景的技术。类石墨相氮化碳(g-C3N4)是一种非金属半导体材料,具有独特的2D片层状结构,有良好的抗酸碱性和热稳定以及化学稳定性,结构和性能易于控制,能够响应可见光。这种材料表现出绿色环保、无毒,易制备方面的优势而在光催化领域受到关注。不过根据实际应用发现,单一的g-C3N4材料量子产率低,光生电子-空穴复合快,影响了其对污染物的光催化降解效果。所以,以g-C3N4为基体进行多元复合,来提高对太阳光的利用效率和光生电子-空穴对的分离速率,从而提升复合材料的光催化效能,具有十分重要的理论和应用价值。
  本文制备了六种光催化剂,利用扫描电镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS),紫外-可见分光光度法(UV-vis)和荧光光谱法(PL)表征分析了材料的相结构、形貌结构和光学性质,研究了其在可见光条件下的催化活性及稳定性,并进一步讨论复合材料光催化活性提高的机制。主要的研究内容及结论如下:
  ①利用硫酸铵辅助尿素高温缩聚制备半导体材料g-C3N4,产量得以提升,最高可达单一尿素制备的2.67倍,当尿素与硫酸铵的质量比为10∶1.5时,制备所得的g-C3N4的光催化性能最佳,对盐酸四环素(TC)溶液的降解率由44.97%提高至61.99%。
  ②以g-C3N4为基体,结合能带与之匹配的钒酸铋(BiVO4),且引入具有优良载流子迁移率的还原氧化石墨烯(RGO),制备了复合光催化材料g-C3N4/BiVO4、RGO/g-C3N4、RGO/BiVO4和RGO/g-C3N4/BiVO4。其中RGO/g-C3N4/BiVO4-8wt%光催化活性最高,可见光照射120min,对初始浓度为20mg/L盐酸四环素溶液的降解率为77.87%。各复合材料经4次循环试验,降解率下降均不超过5%,表现出良好的稳定性。根据UV-vis和PL测试结果,RGO/g-C3N4/BiVO4光催化性能的增强归因RGO的高效电子迁移速率以及复合材料的Z型异质结结构,该结构能够提高其对可见光的吸收性能以及光生电子-空穴对的分离速度。
  ③开展三元复合异质结材料RGO/g-C3N4/BiVO4的自由基捕获实验,添加1,4对苯醌(BQ)后降解率仅为4.92%,添加草酸铵(AO)和异丙醇后对降解效果影响较小,分别为72.13%,68.03%,表明在催化降解过程中超氧负离子自由基(?O2?)为主要活性物质。
  ④开展光催化净化甲醛效果研究实验,可见光下照射180min,g-C3N4、BiVO4、g-C3N4/BiVO4、RGO/g-C3N4、RGO/BiVO4和RGO/g-C3N4/BiVO4对甲醛(初始浓度为0.400mg/m3)的降解率分别为39.00%,25.18%,42.40%,44.12%,40.69%,56.05%,证明通过构建复合异质结对气相有机污染物的降解性能也有所增强。
其他文献
三苯乙烯基苯酚聚氧乙烯醚类农药助剂(TSPEOs)是一类广泛使用的非离子表面活性剂。已有毒性研究表明,TSPEOs具有亚慢性毒性、致畸性,其产生的中间代谢物可能诱发雌激素活性、急性毒性和生长抑制作用。随着TSPEOs的广泛使用,TSPEOs可能进入到环境中,对人类健康和生态环境产生威胁。建立环境基质中TSPEOs的残留检测方法,揭示环境中TSPEOs的残留特征并评价其生态风险具有现实意义。因此,本论文以TSPEOs为研究对象,首先建立了水体和土壤中TSPEOs的检测方法,然后应用于实际水体和土壤中TSPE
一场新冠肺炎疫情,改变了所有人的生活。尽管每个人都在努力适应疫情带来的种种变化,然而202 1年举行的2020东京奥运会,还是让我有了别样的感觉。在奔赴东京之时,看着东京每日飙升的新冠肺炎确诊数据,听着周遭亲朋好友的各种嘱咐,我第一次有了战地记者的感觉。著名战地摄影记者罗伯特·卡帕说过:“如果你拍得不够好,那是因为你靠得不够近。”作为一名体育摄影记者,我坚信只有亲临现场,才能拍出好作品。2021年
期刊
面对越来越严格的污水排放限值,投加外碳源是低碳源污水厂实现TN达标排放不得不采取的措施。目前,污水厂为了提高脱氮效果,大多采用了较高DO控制的完全硝化运行模式,这种运行模式加剧了低碳源污水处理厂碳源匮乏的矛盾。通过运行优化,提升污水自身碳源的脱氮能力,对降低外碳源投加量具有积极意义。大量工程实践表明,污水厂末端增加反硝化滤池,可以提高脱氮效果,但投加低分子碳源有机物,潜在出水COD浓度增加以及低分子碳源的运输和储存安全风险。在这种情况下,固体碳源反硝化滤池逐渐成为了新研究热点。现有研究表明,人工合成固体碳
2020东京奥运会是我参加的第二次奥运会摄影报道。这一次,新华社摄影团队成为国际奥林匹克摄影队(IOPP),拥有最核心的拍摄点位。这是国际奥委会对新华社摄影水平的认可,是几代新华社记者努力的结果,也意味着更高的要求和更大的考验。  在奥运报道工作开始前,前辈鼓励我们要去思考和拍摄超越体育本身的照片。对此,我铭记于心。在接下来的每一天我都在问自己,什么才是奥林匹克?要用什么样的照片来表达奥林匹克? 
期刊
高级氧化工艺(Advanced oxidation processes,AOPs)是一种有效且便捷的有机物处理方法,正受到越来越多的关注。大量过去的报道已表明AOPs可以用来处理许多结构复杂的有机污染物,但大多数研究只关注处理技术对母体物质的降解,而忽略对有机污染物矿化(完全转化为CO2和H2O)程度的考察。有机污染物因不完全降解产生的中间体可能毒性大于母体,造成严重的二次污染。本论文使用硫酸根自由基的高级氧化工艺(Sulfate radical-based advanced oxidation proc
2021年8月1日,在2020东京奥运会田径女子铅球决赛中,中国选手巩立姣夺得冠军。Alpha 1+FE600mm F4 GM OSS,f/4,1/2500秒,ISO400。李欣 摄  我是新浪体育的记者李欣,有17年的媒体工作经验。我与摄影结缘始于2004年雅典奥运会,对摄影的好奇心促使我拿起了相机并开始研究怎么拍出好照片,从此开始了我的摄影生涯。  2020东京奥运会由于疫情原因延迟一年举行,
期刊
磷是引起水体富营养化的限制性因素之一,过量的磷对湖泊、水库等生态系统的平衡造成了破坏。传统的水处理技术在处理低浓度含磷水和地表水时总难以达到优异的去除效果,而吸附法不仅可对低浓度磷进行稳定处理,还能对水中的磷进行回收利用。但是,实验室研发和制备的吸附除磷材料一般难以进行工业量产,无法进行大规模的实际工程应用。因此,寻找能进行工业量产并具有高效稳定性的吸附材料,通过优化运行参数使其能应用于实际的水处理工程中,成为了吸附除磷的研究重点和难点。本文通过对氢氧化锆吸附除磷材料进行改性,研制了一种能进行工业量产、循
厕所粪污含有丰富的氮磷钾植物营养元素,中国农村传统的粪污处理方式就是还田资源化利用。但是,随着农村生活模式城镇化,现代农民喜化肥、憎粪肥的心态越来越明显,厕所粪污的资源化利用途径受阻,农村卫生安全和生态环境问题日渐突出。中国农村地域广阔、环境条件差异大,农村人群居住分散,以厕所为单位的粪污产生量小、收集难度大,户主的意愿决定了粪尿的处理及利用方式,在资源化利用过程中全凭自身“经验”,方式方法粗犷。随着农村改厕工作的推进,农村厕所形式呈现出多样化态势,不同类型厕所的粪污收集方式、贮存过程和处理方式差异较大,
随着辣椒产业及食品加工行业的迅速发展,产生的辛辣类食品废水中含有大量的合成辣椒素。合成辣椒素有强烈的抑菌活性,会对生化污水处理单元造成冲击,影响活性污泥的生长。该文结合基因组学及代谢组学,监测和评价了序批式反应器(SBR)对于不同浓度的合成辣椒素压力的响应情况,并提供了生物强化法作为120mg·L-1高浓度合成辣椒素对SBR系统的冲击的解决思路。通过周期性接种一株高效降解合成辣椒素的粘滞沙雷氏菌Serratia marcescens JK(CICC24870)对SBR系统进行了生物强化。研究的主要结论如下
《剩余印记》  获奖词:  我们生活在动态的世界,我们有境界,因为我们知道世界有高度,不仅是物理高度,更在于思想的高度。当影像作品以平面的形式展示时,一些摄影艺术家开始对这样的表达形式进行反思与批判。其中,年轻的摄影艺術家王佳走在了前面,《剩余印记》从创作时的思考,到展陈样式,明确地再现了王佳在思索与实践过程中的不羁与自由。对经典,我们脱帽敬礼,然后义无反顾地走向未知。摄影艺术家王佳的探索精神,感
期刊