光场层析成像火焰三维温度场测量方法与系统研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:qinxiaogang2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
燃烧广泛存在于能源动力、航空航天、冶金和化工等领域。准确可靠的火焰温度监测有利于提高燃烧效率、降低污染排放、保证生产安全。同时,火焰三维温度分布的准确测量既是燃烧过程机理研究的基础,也是燃烧装置设计的重要依据。基于火焰辐射光场成像的火焰温度场测量方法具有非侵入、响应时间短、系统简单、不需要信号发射装置等优点,获得了广泛关注。本文主要开展了基于光场层析成像的火焰三维温度场测量方法研究,为开发可靠的火焰三维温度场测量仪器提供了理论和技术基础。首先,介绍了火焰辐射的光场成像基本过程,发展了火焰辐射逆向光线追迹模型。结合火焰的辐射传输特性,提出了光场采样方向和位置特性的定量评价指标。分析了探测器像素、微透镜位置以及光场成像系统光学参数对光场采样特性的影响。在此基础上,提出了火焰辐射光场采样的优化方案,采集了轴对称和非轴对称火焰的辐射信息,并利用光场体重建方法重建了火焰温度分布。结果表明优化后的火焰辐射角度采样增大了23倍,非轴对称火焰的重建误差小于3%。针对光场体重建温度场空间分辨率低的问题,将光场重聚焦成像和光学分层成像技术相结合,开展了光场层析成像三维重建方法的研究。着重研究了光学分层重建断层辐射强度重建精度低的问题,分析了火焰发射率对温度重建精度的影响,进而提出了改进的光场层析成像温度场测量方法(Light Field Sectioning Pyrometry,LFSP)。发展了光场重聚焦图像的点扩散函数模型,据此分析了光场相机光学参数与深度分辨率和横向分辨率之间的关系,进而实现了对LFSP重建空间分辨率的定量评价与相机的参数优化。结果表明LFSP重建的横向分辨率和深度分别可以达到100μm和10mm,显著高于传统的光场体重建方法。在相机参数优化的基础上,设计并研制了光学参数可灵活调整的笼式光场相机,并对相机的装配精度、成像的渐晕与畸变、传感器的噪声与线性度等方面进行了分析与评估。开发了基于笼式光场相机的信息处理软件,具有相机拍摄参数控制、光场原始图像采集与解码、光场成像结果展示与存储等功能。在此基础上,对测量系统进行了参数标定与性能评估。结果表明:笼式光场相机的装配精度、成像特性及图像传感器性能均满足实验需求;LFSP测量系统的温度标定误差小于3%。为了验证LFSP的可行性,对乙烯扩散火焰和高温多相流进行了实验研究。对于乙烯扩散火焰实验,主要重建了层流、湍流、双峰等不同结构和流动特性下火焰的三维温度场,并与热电偶测量结果进行了比较与分析。结果表明:LFSP的测量结果与热电偶测温结果相吻合,具有较好的温度测量准确性;同时,LFSP具有较高的空间分辨率以及时间分辨率。对于高温多相流实验,根据对象特性改进了温度测量算法,将LFSP与粒子追踪测速技术相结合,同时测量了高温飞行颗粒的温度、速度参数,并与理论模型和实验现象进行了比较与分析。结果表明:飞行颗粒的温度变化趋势与理论模型一致,大量颗粒温度高于铁及氧化亚铁的熔点,这与形态观察中发现大量颗粒出现熔化的现象相一致。总的来说,实验结果证明了LFSP测量技术的可行性,具有广泛的应用前景。
其他文献
乳腺癌是女性发病率较高的常见恶性肿瘤之一,其中三阴性乳腺癌占所有乳腺癌病理类型的15%-20%,是导致乳腺癌死亡率最高,预后最差的亚型。三阴性乳腺癌是指肿瘤组织免疫组织化学检查结果中雌激素受体(estrogen receptor,ER),孕激素受体(progestogen receptor,PR)和原癌基因人表皮生长因子受体2(human epidermal growth factor recep
近十年来,BIM技术已经在全球范围内得到业界的广泛认可,然而当前道路领域在学习与引进BIM技术同时却面临着诸多难题。首先,高速公路的设计不仅包括线形设计,路面设计也是重要环节。路面设计离不开结构分析,目前BIM环境中却缺少与设计同步的沥青路面结构分析功能。另一方面,在施工中更多的是利用BIM进行动态模拟与过程展示,却很少建立BIM为基础的可视化施工质量管控,以及相应的质量预警体系,很难应对工程后期
广义逆理论在微分方程、数值分析、电网络分析、最优化、马尔科夫链、系统理论等众多领域有着重要应用.Moore-Penrose逆和Drazin逆是两类经典的广义逆.广义逆的发展趋于多元化,产生了许多新型广义逆.例如核逆、核-EP逆、弱群逆.基于神经网络的高速计算能力,许多文献已提供不同类型的递归神经网络来计算高阶矩阵的广义逆.本文致力于核-EP逆、弱群逆的研究及基于递归神经网络计算时变复矩阵的核-EP
随着社会的发展,人类对能源日益增长的需求与现有能源日趋减少的现状之间的矛盾已经越来越突出。能源问题已经成为每个国家,甚至是每个人类生存与发展所面临的终极挑战,开发新能源以及节能环保材料是解决该问题的重要途径。铅卤钙钛矿作为新一代半导体材料,不仅具有较长的载流子扩散长度和较低的激子结合能,且具有价格低廉、制备工艺简单等优点,迅速成为炙手可热的光伏材料。其光电转化效率在短短的几年内从3.8%提升至23
小型化、宽带化、低成本、易集成以及高性能的平面微波器件在卫星通信、移动通信、雷达通信等领域具有重要的应用。本文基于基片集成波导(Substrate Integrated Waveguide,SIW)和基片集成同轴线(Substrate Integrated Coaxial Line,SICL)技术对高性能平面振荡器和双线极化以及圆极化喇叭天线展开深入的研究。基于SIW与SICL两种平面集成导波结构
随着国家“十三五”规划以及“一带一路”倡议的持续推进,大型重要工程日益增多,基础设施领域的建设已成为驱动社会经济发展的重要支撑,结构的安全性、可靠性和耐久性都对混凝土材料性能提出了越来越高的要求。高延性水泥基复合材料(High Ductility Cementitious Composites,简称HDCC)以其稳定的应变硬化特征、超高的拉伸延性和优异的裂缝控制能力在增强结构的安全性、耐久性及可持
交通运输是国民经济中战略性、引领性、基础性产业和服务性行业,建设“交通强国”是未来我国交通运输发展的总目标。随着移动互联网时代的开启,每个用户都成为了交通信息的贡献者,用户使用智能手机来规划路线、在线叫车、搜索目的地等。大量的基于位置的数据由这些设备和应用程序每天生成,包括在线订单,轨迹信息、地图查询数据和带地理标记的签到数据等。这些超大规模的多源数据在云端进行处理和融合生成城市全时段,无盲区的交
研究背景脑胶质瘤是中枢神经系统最常见的恶性肿瘤,其发病率和死亡率逐年上升。尽管针对胶质瘤的诊断和治疗在近年取得很大进步,但是胶质瘤患者的总体生存期未见明显改善,长期生存患者更是罕见。因此,迫切需要开发新的技术和方法以提高胶质瘤的诊疗效果。纳米技术在医学领域的快速发展有望为胶质瘤提供精确的诊断和高效的治疗。纳米银(silver nanoparticles,AgNPs)因其独特的物理、化学和生物学性质
研究背景:疼痛是一种与组织损伤或潜在组织损伤相关的感觉、情感、认知和社会维度的痛苦体验,对个体的生理和心理状态都有显著的影响。越来越多的临床证据表明慢性疼痛患者伴有认知功能损伤。慢性疼痛患者的多项认知领域,包括注意力、学习记忆、信息处理速度和决策能力,均受到损害。有研究表明约2/3慢性疼痛患者表现出注意力中断、工作记忆过程受损。动物研究也证实神经病理性疼痛模型存在记忆损伤。尽管临床和动物研究均表明
高超声速气动加热问题是制约高超声速飞行器发展的关键因素,减小气动加热和做好热防护设计成为实现飞行器长时间航行亟待解决的关键技术。为了揭示高超声速气固界面能量输运机理,并提出针对气动加热和热防护问题的高效解决方案,本文采用分子动力学模拟和分子碰撞理论研究了高超声速气固界面相互作用的机理和界面能量输运过程的调控方法。实验方面,本文研究了热防护材料中石墨在不同厚度下的热导率以及热导率的调控方法。具体如下