论文部分内容阅读
随着家庭日常监护需求的不断提高,多功能生理参数的同步检测成为研究的热点。人们希望可以在无感觉的状态下,通过便捷的检测手段,获得更多能够表征人体生理状态的信息,进而达到健康监测与疾病预警的目的。体震(Ballistocardiogram, BCG)信息监测系统可以在受试者无感觉的状态下,提取反映受试者心血管系统功能、呼吸状况等多生理信息的BCG信号,符合当前对日常监护设备开发的要求。通过对BCG信号研究现状的综述,本文以坐姿BCG信号为研究对象,开展了从BCG信号中检测微弱生理信息,并对其进行分析的研究,主要工作如下:在分析BCG信号产生原理阶段,建立了一种基于体内搏动力产生、体内血流传导、体外检测三者相结合的BCG信号数学模型,模拟了该模型的多周期时域仿真波形,并与实测BCG信号波形进行对比,验证了模型的表征性能及准确性。在BCG信号预处理阶段,分析了BCG信号的属性,对其进行有针对性的消除趋势项、平滑滤波、计算自相关函数等时域预处理。同时,建立了一种基于频域分析的BCG信号简化数学模型,模拟了理论BCG信号的频谱分布,确定了BCG信号的主频率,并进行了有效的频域滤波与小波去噪。在由BCG信号检测心率阶段,提出了一种基于混沌理论的检测方法。首先,在受试者常规心率已知的条件下,采用Duffing混沌振子检测低信噪比BCG信号中的微弱周期成分,并针对其输出相空间轨迹,提出了一种基于脉冲耦合神经网络的混沌判据,从而有效检测到BCG信号中的异常心率;而后,在受试者常规心率未知的条件下,提出一种基于线性随机搜索算法的自适应随机共振方法,将输入噪声的能量转化为BCG信号中微弱周期成分的能量,突出心动周期波形,从而达到自动获取心率的目的。该阶段实验均通过同步采集的受试者心电信号作为评价准则,以验证算法的准确性。在由BCG信号检测呼吸率阶段,提出了三种从BCG信号中提取呼吸率的方法。第一种,基于自适应干扰对消算法,通过抵消两通道BCG信号中的心动周期成分,获取输出中的呼吸成分;第二种,基于变频复解调算法,将BCG信号视为心动周期成分对呼吸成分的调制信号,从解调的角度,将调制信号—呼吸成分解调出来;第三种,基于S变换的包络解调算法,从调幅信号解调的角度,提取BCG信号的呼吸成分包络。最后,对以上所获取的呼吸成分进行峰值检测,以计算呼吸率。该阶段实验均以同步采集的受试者鼻热敏信号作为参考,并与小波变换提取BCG信号呼吸成分方法作对比,给出了各算法的性能评价。在对BCG信号进行特征提取阶段,提出了一种基于BCG信号诊断特征的盲分帧算法。在无心电信号参考的条件下,实现了对BCG信号的分帧,并以此为基础,提取了BCG信号的时域特征、频域特征、时频奇异值特征及长短期重复性统计特征。最后,从特征诊断的角度,提出了基于常规特征点确定性BCG信号诊断方法和基于云模型的模糊性BCG信号诊断方法。该阶段采用心律不齐受试者对所提特征和诊断方法进行实验,以验证方法的优越性。论文最后设计并实现了一套体震信息监测系统。该系统以本实验室开发的坐姿BCG信号检测座椅为硬件装置,提供以上实验所需的实测BCG数据;同时,以基于LabVIEW的BCG信号自动分析平台为软件环境,并通过对一位心律不齐受试者的实际检测过程,测试了本文所提算法的正确性及系统的实用性。