【摘 要】
:
由于锂资源短缺且存在燃烧爆炸等安全隐患,迫切需要发展新型的储能体系以适应社会的发展和进步。使用水系电解液的锌离子电池具备高安全性、低成本、环境友好等优势,是与锂离子电池形成互补储能体系的理想选择之一。锰基材料具有资源丰富、低毒性和高能量密度等优点,是目前水系锌离子电池最有潜力的正极材料之一。其中,一氧化锰来源广泛,价格低廉,已在催化、冶金等多个领域广泛应用。然而,由于低的可逆容量和不明确的反应机制
论文部分内容阅读
由于锂资源短缺且存在燃烧爆炸等安全隐患,迫切需要发展新型的储能体系以适应社会的发展和进步。使用水系电解液的锌离子电池具备高安全性、低成本、环境友好等优势,是与锂离子电池形成互补储能体系的理想选择之一。锰基材料具有资源丰富、低毒性和高能量密度等优点,是目前水系锌离子电池最有潜力的正极材料之一。其中,一氧化锰来源广泛,价格低廉,已在催化、冶金等多个领域广泛应用。然而,由于低的可逆容量和不明确的反应机制,与传统的二氧化锰正极相比,一氧化锰在水系锌离子电池中研究较少。本论文主要针对一氧化锰展开研究。通过结构设计、形貌调控、复合导电材料和电化学活化等手段,获得了兼具容量、倍率和循环稳定性的高性能锰基正极材料。首先通过共沉淀、多巴胺包覆和高温热解等步骤合成了一种多孔的碳包覆一氧化锰微米板复合材料(MnO@C-L)。利用碳的优良导电性提升了材料的电子传导能力,且碳层能够缓解材料颗粒的团聚,同时丰富的孔结构增加了电极反应活性面积和离子传输路径。与商业MnO相比,MnO@C-L材料展示出了良好的储锌活性,实现了稳定可逆的Zn2+存储。在0.1 A g-1电流密度下,该材料具有190 m Ah g-1放电比容量,对应着247 Wh kg-1能量密度。在1 A g-1电流密度下,循环1000圈后放电比容量仍有119 m Ah g-1。为了进一步提升一氧化锰正极的电化学性能,合成了一种具有黄壳结构的碳包覆一氧化锰复合材料(MnO@C-Y-S)。该材料的饼状微观颗粒包含大量空腔和孔道结构,可有效缓解Zn2+脱嵌带来的体积变化问题。此外,碳壳与多孔结构也能改善电子传输和离子传导过程。该材料展现了优异的综合电化学性能。在0.1 A g-1电流密度下,放电比容量可达270 m Ah g-1,对应335.4 Wh kg-1的高能量密度。在1 A g-1电流密度下,首次放电比容量高达188 m Ah g-1,循环1000圈后,容量保持率为97%。在5 A g-1的大倍率下,仍可以达到105 m Ah g-1放电比容量,且循环4000圈后容量保持率为73%。通过非原位表征技术进一步研究了MnO@C-Y-S的电化学活化过程和储锌机理。该材料在初始几圈充放电循环中完成了由MnO向二维层状结构的MnO2-x·n H2O的转化过程,并在随后的充放电循环过程中通过Zn2+与H+共嵌入实现了Zn2+/H+的可逆存储。这种将结构设计和电化学活化相结合的协同策略,可为其它锰基正极材料提供参考。
其他文献
绕组切换型永磁同步电机由于可实现高转矩输出、宽速域、宽高效区运行等优势可广泛应用于车辆电传动领域。同时,绕组切换型电机也有其特殊问题,既要考虑切换前后电机参数变化对车辆运行造成的不利影响,又要考虑适合的绕组切换策略,以解决切换时出现的转矩、转速波动等问题。因此,本文将对绕组切换型永磁同步电机多工况运行下的控制策略进行研究,使应用绕组切换型永磁同步电机的车辆在全速域范围内具有良好的运行性能。本文主要
如今,电力能源作为人们生产生活中最重要的能源之一,其电力系统的稳定性和可靠性决定着整个电网能否安全、高效运行,对输电线路进行故障检测是保证电力系统稳定运行的基础,也是电力巡检监测的重要部分。无人机技术的快速发展,使得电力系统无人机巡检已逐渐取代传统人工巡检方式。另一方面,随着大数据和人工智能技术的发展,特征识别技术得到了快速提高,利用无人机巡检图像对电网输电线路进行故障智能检测已成为电力系统智能化
集成充电机利用电动汽车电机驱动系统的硬件实现充电,有望同时解决充电速度慢和一桩难求两个问题,因此获得广泛关注。Z源变换器因具有有源器件更少,可靠性更高等优点在电机驱动中得到广泛利用,为了实现集成充电有必要对Z源整流器进行研究。集成充电系统复用电驱动系统硬件,不是按照充电功能设计主电路硬件,充电模式下不是效率最优,所以有必要提升效率。本文研究对象是一种通过工作在电感电流断续条件下实现软开关的三相准Z
随着电力电子技术不断更新,直流微电网,新能源供电以及数据中心服务器等终端设备也在不断推进建设。如今全球普遍面临着能源短缺和环境危机的难题,而在消耗超过10%电能的数据中心中所广泛采用的级联式供电系统在电能分配过程中损耗了大量能量。因此如何提高诸如数据中心服务器等高降压比供电系统的效率以及解决设备结构冗余等问题便成了亟待攻克的关键技术点。尽管目前国内外不少学者提出了各式各样的高效率单级式DC/DC变
锂硫电池具有能量密度高、对环境友好以及生产成本低等优点,被认为是最具有发展前景的电池体系之一,但是硫正极较差的导电性、充放电过程中体积变化大以及穿梭效应等严重制约了锂硫电池的发展。本课题基于二维过渡金属碳化物或氮化物(MXene)材料的高导电性、铁基氧化物和硫化物对于多硫化锂的吸附催化转化作用,通过原位生长与超声复合的方式制备了碳化钛(Ti3C2)与铁基氧化物和硫化物的复合材料,有效抑制了锂硫电池
质子陶瓷燃料电池(PCFC)是一种以质子作为导电载荷粒子的固态燃料电池,在中低温400~700℃条件下即可服役供电。PCFC的进一步推广应用受到两方面问题的制约:电解质材料一般熔点高,很难制备;连接体同时受到高温湿氧与还原气氛腐蚀,给连接体/PCFC功能部件的连接提出更高要求。本文首先通过固相反应烧结法(SSRS)一步成型制备了高温质子导体BaCe0.7Zr0.1Y0.1Yb0.1O3-δ(记为B
为应对日益严峻的能源危机和与全球气候变化息息相关的碳排放压力,我国正积极探索替代传统化石燃料的清洁能源。其中,核能作为近乎零排放的清洁能源,成为我国大力发展的主要对象。目前中国的核能利用技术主要为第三代压水堆技术。在第三代压水堆技术中管路系统主要材料为316LN奥氏体不锈钢。核电系统的抗冲击性能是评估系统安全性的重要指标。目前核级管道的冲击分析采用响应谱方法,评价准则借鉴核电管道地震分析的弹性评价
水系锌离子电池是当下储能领域研究的热点之一,其成本低、在自然界中资源丰富,尤其是使用的电解液为水系电解液,不易燃,安全性好,有望成为下一代可充电电池的有利候选者之一,受到了研究者们的广泛关注。但由于锌离子的水合离子半径较大,使得锌离子在正极材料中嵌入困难,影响电化学性能的提升,因此,研究合适的正极材料是水系锌离子电池实际应用的关键之一。在本论文中,共研究制备了两种正极材料,一种材料为Ag掺杂的Mn
锂离子电池的能量密度高、使用寿命长、高低温放电性能好、无记忆效应且设计灵活,因此近年来得到飞速发展。作为消费类的电池,锂离子电池的寿命通常一到三年基本就可以满足用户使用需求,然而,作为动力电池及储能电池,锂离子电池需要有更长的寿命。实际使用条件下的锂离子电池老化测试需要很长时间,导致性能反馈延迟,严重制约锂离子电池的设计与开发,快速评价锂离子电池寿命成为解决该问题的关键。所以,采用加速寿命实验对锂
钙钛矿太阳能电池(PSCs)作为一种新型的光电转化器件,由于其简单的工艺、较低的制备成本和高效的太阳光利用效率得到了科学研究者的广泛关注。在钙钛矿太阳能电池中,吸光层钙钛矿具有易于制备、激子束缚能低、激子寿命长等特点,使得钙钛矿太阳能电池表现出巨大的应用潜力。但是在钙钛矿薄膜生长过程中不可避免地存在晶体缺陷,而这些缺陷将影响钙钛矿太阳能电池稳定性和光电转化效率。本论文使用一步旋涂法制备Cs掺杂的三