论文部分内容阅读
量子信息是量子物理与信息科学的交叉学科,具有深刻的科学意义和广泛的应用价值。近年来,量子信息迅速发展成为研究热点,量子通信是量子信息的主要研究方向之一。量子通信具有理论上无条件安全的独特优势,但是实现现实条件下安全的量子通信仍然面临诸多挑战。测量设备无关的量子密钥分发协议关闭了探测端的所有漏洞,是实现现实条件安全的量子通信的重要一步。虽然光纤信道的测量设备无关量子密钥分发已经有很多实验研究,但是由于光纤信道中传输光子数随传输距离呈指数衰减,所以基于光纤信道构建广域甚至全球的量子通信网现阶段还非常有挑战性,幸运的是,随着量子科学实验卫星”墨子号”的发射成功,基于空间平台自由空间信道的量子通信发展成为实现全球化广域量子通信网络最为切实可行的手段之一,而自由空间测量设备无关量子密钥分发的实验研究却仍是空白。在这一背景下,本论文主要针对无波前探测自适应光学技术和自由空间信道独立光源双光子干涉关键技术进行研究,最终成功实现国际上首个独立光源远距离(20km)自由空间双光子干涉,并在此基础上成功实现了自由空间测量设备无关量子密钥分发。独立光源双光子干涉是测量设备无关量子密钥分发的核心。但是由于受到大气湍流的影响,光束在大气中传播时很难保持稳定的空间模式,再加上到达角起伏和闪烁等效应,导致很难实现自由空间双光子干涉,而且水平链路近地大气的强湍流会带来严重的波前畸变,极大限制单模耦合效率。为了解决上述挑战,本人主持发展了无波前探测自适应光学技术,使其能够满足强大气湍流条件下的自由空间量子通信链路的需求,并通过精确的时序控制和仔细的参数优化,最终在水平约10km自由空间链路上能够明显抑制链路效率抖动并提升大幅度提升单模光纤耦合效率。耦合功率相对标准差从0.88下降到0.52,量子信道效率提升约4-8倍,使得远距离自由空间信道双光子干涉成为可能。除了强度匹配,独立光源双光子干涉还需要两个入射脉冲在到达时间、频率等自由度全同。本人还参与研发了基于高稳晶振的独立时钟同步技术和基于分子池吸收谱的独立激光器锁频技术,实现时间同步精度优于20ps,频率一致性优于0.1pm,满足双光子干涉要求。基于上述关键技术的突破,我们成功实现了远距离(约20km)自由空间双光子干涉(HOM),干涉能见度约为0.45(极限0.5),并在此基础上实现自由空间测量设备无关量子密钥分发实验,为现实条件下安全的全球量子保密通信网奠定了技术基础。本人工作的创新主要在于:1通过发展适用于强湍流的无波前探测自适应光学,独立时钟高精度时间同步和独立激光锁频等技术,在国际上首次实现独立光源远距离(约20km)自由空间双光子干涉。2在实现远距离(约20km)自由空间双光子干涉基础上又进一步实现自由空间测量设备无关量子密钥分发实验,为构建具有现实条件下安全的广域量子保密通信做出重要贡献。