论文部分内容阅读
带钢冷轧生产过程中,轧制力是一项至关重要的参数。其预测精度将直接影响最终产品的质量,并有效减小带材的头尾长度,提高原材料的利用率。此外,轧制力大小还决定着轧辊辊缝的预设定,对轧制过程的稳定性有直接影响。传统的机理模型结构简单且存在较多假设问题,适用面窄,无法满足要求。为了提高冷轧机组的轧制力预测精度,本文基于轧制基本理论,将机理模型同神经网络以及智能优化算法相结合来建立模型,利用现场采集的数据进行仿真。Bland-Ford-Hill公式是常用的轧制力机理模型。首先结合Bland-Ford-Hill公式,着重分析变形区参数,确定影响轧制力大小的变量,以此作为神经网络模型的输入,用神经网络来进行轧制力预测。相比于机理模型,神经网络减少了参数设置的困难,避免了繁琐的公式计算。极限学习机(Extreme Learning Machine,ELM)神经网络,因其结构简单,无法获取数据中的隐含的深层次特征。此外,对于轧制过程中产生的海量数据处理能力欠佳。为了提高对复杂目标函数的拟合能力,满足大数据集下的轧制力预测要求,建立深度神经网络(Deep Neural Network,DNN)模型来进行轧制力预测。为了解决深度网络难以训练的问题,采用批归一化(Batch Normalization,BN)算法稳定激活函数的梯度区间;采用Adam随机优化算法为参数提供自适应学习率。同时,为了提取数据中的有效信息,使用深度稀疏自编码器(Deep Sparse Auto-encoder,DSAE)完成模型的无监督训练。为了滤除现场采集数据中的噪声,进一步提高轧制力预测精度,建立引入去噪机制的深度信念网络(Deep Belief Network,DBN)。采用改进的对比散度(Contrastive Divergence,CD)算法对网络进行训练,修正参数更新过程中的梯度误差与方向误差,加快网络的收敛速度。选取Relu函数作为激活函数,避免常规激活函数如Sigmoid由于饱和非线性特性造成的梯度弥散现象。仿真结果表明,轧制力预测精度以及建模速度优于深度稀疏自编码网络。