【摘 要】
:
水系储能器件作为一种安全环保、工艺简单以及成本低廉的储能装置,具有非常高的应用价值。但受限于水较窄的电位分解窗口,水系电池的放电电压通常不高,在1.2 V左右。多数正极材料的工作电位都在水析氧电位之下,可直接在水系电解液体系中使用;要提高全电池的工作电压,具有低工作电位的负极材料的构建是关键。氧化铁因具有高的析氢过电势和较低的电荷存储电位,作为水系电池负极有望实现高容量和低工作电位。但氧化铁负极在
论文部分内容阅读
水系储能器件作为一种安全环保、工艺简单以及成本低廉的储能装置,具有非常高的应用价值。但受限于水较窄的电位分解窗口,水系电池的放电电压通常不高,在1.2 V左右。多数正极材料的工作电位都在水析氧电位之下,可直接在水系电解液体系中使用;要提高全电池的工作电压,具有低工作电位的负极材料的构建是关键。氧化铁因具有高的析氢过电势和较低的电荷存储电位,作为水系电池负极有望实现高容量和低工作电位。但氧化铁负极在水溶液中工作是存在严重的容量衰减现象,本论文针对此问题,开展氧化铁在不同水系电解液中的储能机理研究,并由此指导其性能的优化改进,主要有以下工作:(1)通过一步水热法合成指环状纯相α-Fe2O3,并在中性以及碱性电解液中进行三电极测试,测试其储能特性。发现其具有较高的初始容量,在碱性电解液中可达180 m Ah g-1,但循环过程容量衰减迅速到35 m Ah g-1;在中性电解液中初始容量仅有110 m Ah g-1,循环100圈时容量持续下降到接近0,在此过程伴有沉淀生成。使用原位拉曼和其他表征技术检测了α-Fe2O3在不同电解液中的衰减机理。结果显示,Fe2O3在中性电解液中会在循环过程被还原成Fe2+进入电解液,并与电解液中的OH-以及溶解氧结合,最终生成Fe OOH沉积在底部,造成电极材料不可逆的质量损失;而在碱性条件下,Fe2O3在前期放电过程中被不可逆地还原成Fe3O4,指环状结构坍塌团聚成较大的颗粒。因而,如何有效抑制中性条件下的不可逆质量损失和碱性条件的结构坍塌和团聚是发展稳定氧化铁负极的关键。(2)针对碱性电解液中活性材料不断团聚的现象,采用搅拌法将Fe2O3与GO复合,研究其在碱性电解液中的电化学性能。发现GO在循环过程被还原成r GO,GO的存在可显著提高复合电极的比电容和循环稳定性。FG10(10%质量比含量的GO)在1 A g-1的电流密度下比电容可达223 m Ah g-1,但随着循环仍有明显的衰减;随着GO含量的增加,电极材料的比容量略有下降,但其循环稳定性逐渐提高,FG200在3 A g-1循环400圈后容量保持率可达95%。与GO复合的样品的电化学性能明显优于纯Fe2O3,说明GO的混合可有效抑制Fe3O4的团聚,从而提高电极的稳定性。(3)用水热法制备了微米球状Ni(OH)2作为正极。使用优化后的FG100作为负极,在碱性水溶液中组装Ni-Fe全电池。组装的全电池工作电压范围1.7 V,放电平台在1.1 V,在1 A g-1的电流密度下全电池的容量可达66 m Ah g-1(计算正负极活性材料的质量),并且具有较好的循环稳定性。
其他文献
相较于理想的自由场环境,室内空间中混响声(包括早期反射声和晚期反射声)的存在将提高声像的外化程度,提升听觉距离感知的精度,增强虚拟声刺激的真实感。同时,混响声也将对听觉定位造成一定影响。目前,混响场水平面听觉定位的研究存在分歧,主要表现为:(1)混响声是否会对水平面听觉定位造成显著影响;(2)混响声将提高还是削弱水平面听觉定位的准确性。针对上述问题,本工作对房间尺寸与混响时间进行变量控制,构造了不
近年来,分数阶微积分被引入到控制理论中,取得了丰富的研究成果。在现代工业应用中,传统PID控制器由于结构简单,并不能很好地达到控制要求。分数阶PID控制器作为整数阶PID控制器在分数阶微积分理论上的推广,将积分阶次和微分阶次扩展为实数,比传统PID控制器在设计和控制范围上提供了更大的灵活性,能很好的满足当今社会生产对于高性能控制器的要求。但是,由于多了两个自由度,分数阶PID控制器参数的设计变得更
随着“碳达峰”和“碳中和”目标的提出,全球风力发电在能源结构中的占比将大幅提高,风力发电的随机性与波动性对电力系统安全与经济运行的影响日趋显著。由于风电出力的不确定性,传统的确定性潮流计算分析方法已经不再适用,因此需要采用能够考虑注入功率随机性的方法对电力潮流进行求解。概率最优潮流便是在考虑随机功率注入的条件下求解电网最优运行的方法,是分析风力发电随机性对电网运行状态不确定性影响的有效工具。由于风
随着我国基础设施建设的不断发展,公路、铁路相互交叉跨越的情况时有发生。当拟建桥梁欲跨越繁忙的既有路线时,相比于常规的桥梁施工方法,转体施工技术既保证了既有路线的正常营运,又极大地减小了施工安全隐患,因此在工程实际中应用较为广泛。由于转体施工法拥有广阔的发展前景和应用空间,因此转动装置接触面的摩擦行为研究具有较大的学术研究价值。大吨位转体施工中,摩擦力的计算至关重要,但现有工程实践中给出的近似计算方
干燥是造纸过程能耗最大、机理非常复杂的工序,降低其能耗是企业推进节能减排工作亟需解决的问题。现有的干燥过程模拟与能效优化研究主要基于机理模型,建模过程需要精准的理论基础,适用于简单、特定的过程对象,对于复杂的过程对象模拟精度无法满足生产要求,在此基础上建立的优化模型效果自然欠佳。本文以生活用纸纸页干燥过程为研究对象,提出了一种“机理+数据驱动”的混合建模方法,用于模拟纸页干燥关键过程参数。在过程模
目前,移动机器人在工业、国防和物流等领域都占据着十分重要的地位,代表着国家科学技术的发展最前沿。在面对复杂的任务场景,如野外探索、安防巡逻和仓储运输时,单机器人在鲁棒性、处理能力等方面均不占优势。而多机器人系统可以通过信息交互与融合实现协作,具有更灵活的结构与更强的抗干扰能力,具有非常广阔的应用前景。本文以扩展卡尔曼滤波为基础研究多移动机器人的动态定位及目标跟踪问题,并在仿真平台和自主设计的实验平
内酯酶是一种内酯水解酶,能够高效催化内酯类化合物酯键的水解,生成对应的羟基酸。其独特的催化特性使其广泛用于食品工业、医药化工等领域。已有报道内酯酶大部分属于金属β-内酰胺酶超家族,少数属于α/β水解折叠酶超家族,极少数属于磷酸三酯酶超家族。其中,α/β水解折叠酶超家族的成员一般是酯酶或脂肪酶,但是它们中的部分具有混杂的催化效率较低的内酯酶活性,因此不作为一般的酯酶而是内酯酶。然而,该家族的内酯酶由
BiFeO3-BaTiO3(BFO-BTO)由于其较高的居里温度和压电活性,而且存在菱形相和伪立方相共存的准同型相界结构,在相界附近能够获得较好的介电、压电和铁电性能,因而备受研究者们的关注。但是,主晶相BiFeO3中的Bi元素在高温烧结过程中易挥发,并且Fe3+会变价为Fe2+,使得BFO-BTO的漏电流较高,难以在高温高压下充分极化,电学性能受到限制。本论文采用传统固相反应法制备0.7BiFe
三维重建一直是计算机图形学和计算机视觉领域的研究热点。在过去的几年中,使用深度学习技术的单视图的三维重建和三维生成领域迅速发展。随着该领域的不断发展,已经不断的提出了许多的方法,这些方法可以根据它们用作输入输出的形状表示对这些方法进行分类。网格作为常见的三维表达方式也被不断被研究,基于网格的三维重建通常使用图卷积技术来对模版网格进行变形去拟合真实的网格。另一方面,一些研究者将生成模型的结构作为研究