【摘 要】
:
土木工程结构运营过程中受到环境侵蚀、材料劣化以及各类荷载作用,结构损伤逐渐萌生、发展甚至严重威胁结构的正常使用与承载能力,因而合理有效的结构健康监测与损伤识别技术是结构损伤早发现、性能退化早预警的有效保证。钢筋腐蚀是导致钢筋混凝土结构早期损伤的重要原因之一,如何准确获取钢筋的腐蚀信息包括腐蚀的位置与腐蚀的面积,是进一步评价腐蚀后结构性能的关键。桥梁支座损伤是影响桥梁结构性能的重要因素,有效监测桥梁
论文部分内容阅读
土木工程结构运营过程中受到环境侵蚀、材料劣化以及各类荷载作用,结构损伤逐渐萌生、发展甚至严重威胁结构的正常使用与承载能力,因而合理有效的结构健康监测与损伤识别技术是结构损伤早发现、性能退化早预警的有效保证。钢筋腐蚀是导致钢筋混凝土结构早期损伤的重要原因之一,如何准确获取钢筋的腐蚀信息包括腐蚀的位置与腐蚀的面积,是进一步评价腐蚀后结构性能的关键。桥梁支座损伤是影响桥梁结构性能的重要因素,有效监测桥梁支座损伤是桥梁结构安全运营的重要保证。本文基于长标距光纤传感技术,提出了钢筋腐蚀与桥梁支座损伤两类病害的识别、评估方法。具体研究内容如下:(1)总结分析了长标距光纤传感技术的基本概念、长标距光纤传感器的特点以及区域分布传感理念。并以南京长江大桥双曲拱桥的区域分布监测为例进行了分析说明,南京长江大桥双曲拱桥通过维修加固,目前运营状态良好。(2)建立了静荷载测试、移动荷载测试下基于长标距光纤传感技术的结构腐蚀损伤的定位定量识别方法:对于静载测试,采用腐蚀前后长标距应变比及其对数损伤指数进行腐蚀定位,并通过结构平均刚度识别进行腐蚀后钢筋面积反演。对于移动荷载测试,基于长标距应变时程的包络面积及其对数损伤指标进行腐蚀定位,根据长标距应变时程积分进行结构单元平均刚度识别,并进一步反演腐蚀后的钢筋面积。针对腐蚀初期以及中后期不同的腐蚀状态,提出了不同的腐蚀定量方法。有限元腐蚀模拟以及钢筋混凝土梁的电化学加速实验分别验证了腐蚀初期与中后期的腐蚀定位定量方法的有效性。(3)基于腐蚀定位定量结果进行了腐蚀后钢筋混凝土梁的承载力性能评估:定义了等效钢筋比和等效钢筋面积的概念,并对钢筋材料本构模型进行了修正,基于修正的钢筋本构模型与钢筋面积识别结果对腐蚀后钢筋混凝土梁的承载力性能进行了预测。腐蚀后梁的破坏性实验所测得的真实承载力性能与预测结果的对比分析,验证了承载力评估结果的准确性,并对腐蚀后梁的破坏特征进行了分析总结。(4)支座损伤是桥梁结构的主要病害之一,也是影响桥梁安全运营的关键。本文基于长标距光纤传感技术,提出了环境振动测试下的系杆拱桥支座损伤识别方法,包括‘斜率法’与‘指标法’,均利用主梁动力指标变化模式进行支座损伤间接识别。该方法操作方便,可以有效区分出支座损伤、梁体单元损伤与系杆损伤的不同变化模式。同时采用有限元软件模拟了实验室系杆拱桥的各类损伤,验证了方法的准确性。
其他文献
随着移动互联网的迅速发展以及智能移动终端的普及,越来越多的用户从传统的PC端上网逐渐转换到基于移动智能终端的移动互联网上。各种应用软件在颠覆用户生活习惯的同时,涉及到了用户的个人隐私,不可避免的带来了移动信息安全泄露的威胁。因此,基于移动终端的信息安全也成为了当下的热门研究方向。人脸识别技术主要是基于人的面部特征信息来进行身份识别,综合了人工智能、机器学习、图像处理等众多技术,其识别准确率也逐渐提
传感器节点的能量受限问题是无线传感器网络(WSNs,Wireless Sensor Networks)中的一个重要问题,它关乎到WSNs的使用寿命。近年来,利用无人机(UAV,Unmanned Aerial Vehicle)对节点进行充电引起了国内外学者的广泛关注。本学位论文重点研究了UAV辅助的WSNs充电策略,根据传感器节点的剩余电量和无人机的机载能量,在保证WSNs正常工作的情况下,优化UA
近年来,随着人工智能的兴起,无人驾驶技术逐渐成为研究的热门领域。无人驾驶汽车通过传感器感知周围环境,而环境感知主要包括目标的跟踪与识别。因此高精度的跟踪算法以及高准确率的识别算法对无人驾驶车辆的研究具有较大的推动作用。在目标的跟踪过程中,由于回波信号的非视距传播以及环境噪声干扰等因素导致观测信息中出现奇异值,从而影响算法的跟踪精度。此外,在目标识别过程中,传统的识别算法对类别不平衡问题较为敏感。然
大规模机器类通信(massive Machine Type Communication,m MTC)作为第五代(the Fifth-Generation,5G)移动通信系统的三大关键场景之一,广泛应用于智慧交通、城市大脑、健康监测等领域,为人类的生产和生活提供了极大的便利。与此同时,巨大的用户数、庞大的数据量以及复杂的业务场景,也对通信领域技术的革新提出了严峻的挑战,其中就包括对无线网络接入的控制
近些年来,随着移动智能设备的不断发展,运行于移动设备的应用程序越来越丰富,移动设备的资源和处理能力限制导致了某些应用程序无法满足用户的服务质量要求。克服这一问题的方法就是将移动设备上的计算密集型任务卸载到部署在网络边缘的云服务器上,称为移动边缘计算(Mobile Edge Computing,MEC)。然而,移动边缘云服务器的资源有限,不同的卸载策略和资源分配方式会显著影响用户的服务质量,因此,如
射频识别(Radio Frequency Identification,RFID)与传感技术是物联网的关键技术,其中,标签是射频识别与传感系统中必不可少的信息载体。与其他类型的标签相比,无源标签不含电池,因而成本低、结构简单且使用寿命长,但也存在功能有限等缺陷。因此,研究射频识别与传感系统的理论基础,探索无源标签的性能提升方法,实现不同应用场景下低成本、小型化、柔性的新型无源标签,对于射频识别技术
情感作为人类生活体验的一个重要基础,影响着人类的认知、感知和日常生活。因此,情感识别作为人机交互中的一个重要的研究领域,近年来越来越受关注和研究。情感可以通过多种方式表达,多模态情感识别已经成为情感识别领域的发展重心。本文以语音和人脸表情等模态为基础,分别研究了语音情感识别和人脸表情识别这两个单一模态的情感识别,并在此基础上采用特征融合和决策融合的方法来实现多模态情感识别。具体的工作如下:(1)首
随着深度学习技术的成熟和普及,以及在海量数据和丰富应用场景的催生下,以卷积神经网络为代表的深度卷积网络开始逐渐替代机器学习时代基于人工提取特征的传统算法。而不断逼近精度极限的代价就是网络深度、尺寸的增长,网络模型越来越趋于臃肿,这对于深度学习的产品落地化是一个严峻的考验。为了更好地在计算资源有限的设备端部署模型且不影响使用,模型压缩的相关研究应运而生。本文主要基于基础算法和具体应用场景,对模型压缩
随着工业4.0的到来,各行业正不断朝着智能化的方向发展,工业机器人作为工业生产中的关键技术之一,成为企业实现产业优化升级的重要部分。自动导引车作为机器人的一种,随着近年来各种导引技术的不断发展,其应用场景变得更加广泛,其中视觉导引由于其巨大的应用潜力成为自动导引技术中的研究热点。本文根据实际应用中在室内场景下的AGV小车行驶需求,提出一种基于场景识别、场景下辅助行驶和行驶中特征物检测的单目视觉AG
唇语识别任务是指通过说话人的嘴唇动作,识别出说话人的语言内容。唇语识别的关键是如何有效提取出能反映嘴唇运动信息的特征向量。深度神经网络可以通过目标函数和反向传播机制更新海量参数的权重,自动学习到与目标任务相关的特征,在唇语识别任务上取得了较好的结果,但是由于唇语识别任务本身的复杂性和嘴唇运动的多样性,唇语识别任务仍然存在很多难点和挑战。针对这些问题,本文提出了一种基于深度学习注意力机制的词语级别的