硼碳氮薄膜的脉冲激光沉积、键结构演变与力学性能

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:jenjen1985
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
硼碳氮(B-C-N)三元化合物兼具立方氮化硼与金刚石的优良特性,作为一类超硬结构材料,在防护涂层、切削工具等工程领域具有广泛而重要的应用。特定键结构是B-C-N薄膜获得优异力学性能的前提,而现有研究却很少涉及沉积过程中B-C-N薄膜的键结构演变问题。为此,本文采用脉冲激光沉积技术制备B-C-N薄膜,重点研究其键结构和力学性能随沉积工艺(氮气压力、衬底温度、激光能量密度)的演变规律,以期通过建立键结构和力学性能之间的相互关系实现对B-C-N薄膜力学性能的优化。通过调整沉积工艺,分别在不同氮气压力(2.5~5.0 Pa)、衬底温度(RT~600?C)和激光能量密度(1.0~3.0 J/cm2)条件下制备出B-C-N薄膜。利用红外光谱和X射线光电子能谱对薄膜结构进行分析,结果表明薄膜中均含有B-N、B-C、C-N和C=N等不同结合键,说明形成了B-C-N三元化合物,得到的薄膜为原子级杂化。随着氮气压力的增大,B-C-N薄膜的沉积速率不断增大,粗糙度先减小后增大,同时N含量增加,B含量先增加后减小,而C含量先减小后增加。此外,薄膜键结构也发生相应演变:当氮气压力从2.5 Pa增大到3.5 Pa时,键结构由sp2杂化的B-N和C=N键向B-C键和sp3杂化的C-N键演变;由3.5 Pa继续增大到5.0 Pa时,薄膜的键结构又发生由B-C和sp3杂化的C-N键向sp2杂化的B-N和C=N键逆向演变。随着衬底温度的升高,B-C-N薄膜的沉积速率和表面粗糙度均不断减小,同时C和N含量逐渐降低而B含量增大,而且键结构也发生相应演变:当衬底温度从室温升高到400?C时,键结构从sp2杂化的B-N和C=N键向B-C键和sp3杂化的C-N键演变;从400?C继续升高到600?C时,又由B-C和sp3杂化的C-N键向sp2杂化的B-N和C=N键逆向演变。随着激光能量密度的增大,B-C-N薄膜的沉积速率不断增大,表面粗糙度先增大后减少,同时B和N的含量逐渐增加而C含量则不断降低,而且键结构逐渐由sp2杂化的B-N和C=N键向B-C键和sp3杂化的C-N键演变。在不同脉冲激光沉积条件下制备的B-C-N薄膜,其硬度和弹性模量的变化范围分别为7.5~33.7 GPa和128~256 GPa,这与沉积过程中薄膜键结构和键含量的演变规律相一致:高含量的B-C键和sp3杂化的C-N键有利于提高薄膜硬度和弹性模量,而高含量sp2杂化的B-N和C=N键则会劣化薄膜的力学性能。
其他文献
本研究以揭示MBR中膜污染的产生机理与寻求预防对策为目标,通过处理城市内河道水和人工配制污水,就一体浸没式膜.生物反应器($MBR)中混合液污泥和膜上污泥的EPS与不同特性膜过滤
学位
ZrN比TiN具有更好的耐磨性、抗腐蚀性,更优的力学性质,良好的化学和热学性能以及漂亮的金黄色和较高的硬度和熔点,已经在表面防腐、表面装饰以及各种工模具的表面强化及提高
随着能源需求的不断增长,太阳能、风能等可再生能源受到广泛的关注,因此探索具备优良性能的新型储能材料已成为当今的一个研究课题。锂离子电池,有比容量大,循环寿命长,充放电速率快等优点,在电子设备和电动汽车领域表现出巨大的潜力。电极材料是制约锂离子电池发展的关键之一,因此,设计构筑新型电极材料显得尤为重要。锰氧化物,作为一种新型的锂离子电池电极材料,由于其具有高容量、低成本、环境友好等优点,受到广泛研究
胃肠道间质瘤(gastrointestinal stromal tumors,GIST),过去曾称为平滑肌瘤、平滑肌肉瘤、怪异形平滑肌瘤、成平滑肌细胞瘤等.近年来随着分子生物学、免疫组织化学及电镜技术的发展,对该病的认识不断深入.已认识到该病是原发于胃肠道、网膜及肠系膜,干细胞生长因子受体(KIT)阳性的梭形细胞或上皮样细胞肿瘤[1],显示向胃肠道间质Cajal细胞(胃肠道起搏细胞)分化。
铝酸盐发光材料多以Eu2为主激活离子,而自然界中铕离子是以三价形式稳定存在,故需要对Eu”进行还原以得到Eu2。Eu3+还原的难易程度与其所在基质材料密切相关,在CaS、CaF2、SrAl2