论文部分内容阅读
非线性代数方程组(或者称多项式方程组)的数值求解,特别是其全部解的计算问题,有重要的理论价值,又有很强的应用背景,是理论物理等基础科学领域,以及电力系统、机械工程、化学工程等技术学科的重要模型问题。同伦算法是解决该问题的一类重要的数值方法,但对实际应用中经常出现的稀疏和退化多项式方程组,经典同伦方法效率低下。多齐次同伦算法是对经典同伦方法的发展,它利用非线性代数方程组的最佳齐次结构,可以大幅度减少退化问题所需跟踪解曲线的条数。然而确定最佳的齐次结构,计算上等价于两个计算复杂度为NP-难的问题:(a)在所有可能的齐次结构中寻找多齐次Bézout数最小的分组;(b)对给定的一个齐次结构计算相应的多齐次Bézout数。由于问题具有本质上的困难,近似算法成为必然的选择。现有文献中最好的确定性近似搜索方法能够计算阶数15左右的问题,这与实际应用的要求有相当大的距离。
为了计算更大规模的问题,克服确定性近似方法必须在某些邻域内做遍历搜索的缺陷,该文首次将随机算法引入该问题,构造了两种具有全局收敛性的随机算法。一种是随机分裂算法,它能够以很高的概率得到精确解或它好的近似解。另一种是随机多巢算法,该算法随机搜索最优k-分组,其特点是灵活性强、实用性好。此外还基于向后贪婪的思想发展了搜索最优分组的逐次最优选择算法,并对各种确定性近似搜索算法进行了分析比较。
变量分组给定后,计算的核心是构造有效的积和式算法。该文对稀疏矩阵提出了有效的混合算法,并且将新算法应用于分子化学问题,使得计算速度比经典算法提高了50倍以上。再通过引入随机路径概念,给出了Rasmussen近似算法的改进,并得到新的积和式上界估计。
伪随机数生成是随机算法的基石。该文基于Weyl序列设计了一类新的、性能好并具有进一步改进潜力的随机数生成器。
该文综合利用组合优化、组合计数、随机算法、统计计算等数学工具,多方面推进了搜索多齐次同伦算法最优变量分组有关计算问题的研究,将可计算问题的规模提高到30左右。随机整体算法的提出为下一步更深入的研究工作奠定了良好的基础。