【摘 要】
:
超表面是通过设计合成的亚波长二维平面超材料,具有自然材料所不拥有的独特电磁特性。相比于超材料,超表面制造的复杂度和成本得到有效的降低,且损耗也显著减少。由于自然界中手性材料的光学特性较为微弱,因此将手性结构与超表面复合形成手性超表面,通过操纵电磁波的偏振、相位、振幅等来增强手性光学响应,在生物、化学、光电子等领域具有重要的研究价值。本文利用石墨烯的可调特性,将其应用于手性超表面中,运用CST仿真软
论文部分内容阅读
超表面是通过设计合成的亚波长二维平面超材料,具有自然材料所不拥有的独特电磁特性。相比于超材料,超表面制造的复杂度和成本得到有效的降低,且损耗也显著减少。由于自然界中手性材料的光学特性较为微弱,因此将手性结构与超表面复合形成手性超表面,通过操纵电磁波的偏振、相位、振幅等来增强手性光学响应,在生物、化学、光电子等领域具有重要的研究价值。本文利用石墨烯的可调特性,将其应用于手性超表面中,运用CST仿真软件研究了超表面对电磁波的偏振调控特性,包括圆二色性、偏振转换特性等。本文的具体内容如下:本文首先分析了石墨烯电导率和外部偏置电压的关系以及手性的基本原理,设计了一种动态可调手性超表面器件。通过优化该器件几何参数,在1.181 THz处,该器件对左旋圆偏振波和右旋圆偏振的吸收差值达到最大(0.85),即圆二色性为0.85。改变石墨烯的费米能级可以动态地调整器件的圆二色性。结合手性超表面的特性,将手性超表面初始单元结构与其镜像单元结构按照象限阵列排布,实现了太赫兹近场数字成像。对石墨烯的费米能级进行调控可以动态的改变其在太赫兹近场数字成像应用中成像的分辨率。进一步设计了一种工作在太赫兹波段的,可在线偏振波与圆偏振波入射下实现不同功能的双功能可调手性超表面器件。一方面,在圆偏振波的入射下,该超表面器件实现圆二色性的功能,在1.37 THz处圆二色性可达0.63;另一方面,在线偏振波的入射下,该超表面器件实现线偏振-圆偏振的偏振转换。通过调节石墨烯费米能级从0.1 e V到1 e V,可以实现圆二色性“关”和“开”的切换以及偏振转换“关”和“开”的切换。改变入射角和偏振角,该手性超表面器件都具有稳定的圆二色性和偏振转换特性。
其他文献
<正>种子法将品种保护范围扩大到收获材料,一是防止实际中利用繁殖材料与收获材料之间存在的边界模糊,比如将收获的常规小麦作为种子销售的情况;二是给品种权人行使权利和收集证据提供更多的机会,比如在繁殖材料销售或使用阶段,品种权人没有发现侵权或者没有机会行使权利的情况下,在收获材料销售或仓储等环节还可以收集证据和主张权利。
垂直腔面发射激光器(vertical cavity surface emitting lasers:VCSEL)问世于20世纪70年代后期,与边发射激光器(edge-emitting laser,EEL)相比,具有体积小、功耗低、光束质量好和易于集成等优点,被广泛应用于半导体激光器、光通信、和传感等领域。然而VCSEL因横向尺寸大且为圆形对称结构,导致输出激光的偏振态不稳定。因此,对其偏振态的稳定
星载激光测高仪是一种主动式遥感观测系统,结合卫星平台的高精度姿态和位置信息以及激光指向信息,可以获取激光脚点的定位坐标。在高分辨率立体测绘中,将激光测高仪激光脚点作为光学相机控制点,可以发挥两种传感器的优点,实现高精度的对地观测,生成高分辨率的立体测绘成果。然而星载激光测高仪发射及在轨运行期间的指向角系统误差以及大气折射效应所导致的光束传输方向发生弯曲,会产生较大的激光脚点平面位置偏差,从而降低星
怎样创新新时期群团组织的工作方法载体,是现阶段各个群团组织的一项主要任务。创新是一种发展动力,创新不止有效于群团工作或党建工作,更有助于企业及个人职业生涯。没有创新的心态和思维就只能止步不前,碌碌无为。群团组织是青年员工发挥才能,发光发热的摇篮,是向党组织输送人才的重要渠道,群团组织必须走一步看十步,登高望远才能跟上新时期的步伐,适应新时期的变化,才能使群团工作争取主动,增强活力,在推进群团组织工
为探究乙酸钠作为碳源时,不同污泥源外源短程反硝化过程中亚硝酸盐积累特性,采用1号和2号SBR分别接种某污水处理厂二沉池和同步硝化反硝化除磷系统剩余污泥,通过合理控制初始硝酸盐浓度和缺氧时间,实现了短程反硝化的启动,并考察了其在不同初始COD和NO3--N浓度条件下的碳、氮去除特性.试验结果表明:以乙酸钠为碳源,1号和2号SBR可分别在21 d和20 d实现短程反硝化的成功启动,且其NO2--N积累
超材料,因其特有的超越天然材料的电磁性能而倍受科研工作者青睐。其二维形式——超表面,由于体积小巧、高设计自由度以及非同寻常的物理特性,在问世的几十年里迅速发展并成为了一种高效的电磁波调控手段。它的出现弥补了自然材料对电磁波响应的不足:薄薄的一层亚波长结构,即能实现对电磁波的完美吸收和产生类电磁诱导透明效应(Electromagnetically Induced Transparency,EIT),
多芯光纤是一种容纳多个纤芯的特种光纤。近年来,随着5G、大数据、互联网与物联网的发展,对信息传输和信息收集载体提出越来越高的要求,天然具有多个信道的多芯光纤,因其结构优势,在光纤通信和光纤传感领域愈发受到重视。所以研究多芯光纤器件及其制备方法,具有较大的应用价值和研究前景。光纤熔融拉锥技术和光纤侧边抛磨技术作为光纤微加工技术领域中重要的组成部分,极大改变了光纤之间相互连接的方式,提高了光纤和外界环
进入二十一世纪以来,信息全球化已融入到我们生活的方方面面,特别是近几年疫情的肆虐使得人们对虚拟网络的依赖愈发的强烈,人们对信息的获取、上传的速度越来越快,对视频的观看越来越清晰,对网络游戏等娱乐项目的网络延时的要求也越来越高。这一切都预示着当下的通信技术必须具备超大容量、超高速度、超长距离、超广范围等特点。而多波长布里渊光纤激光器(Multiwavelength Brillouin fiber l
随着小型无人作战平台和单兵便携式设备的发展,对精度更高的小型化远程激光测距机的需求更加迫切。受限于小型化系统对体积重量、功耗成本的限制,系统无法采用全波形的采样计时电路,现有的时刻鉴别电路往往采用阈值鉴别法,给激光探测系统设置阈值,当激光回波能量超过阈值时,探测电路输出终止信号,该信号即为激光脉冲的到达时刻,该方案电路简单方便,但阈值鉴别法随着回波信号幅值的变化会产生较大的行走误差,严重影响测距精