论文部分内容阅读
宽带无线接入、传感器网络、雷达系统、电子对抗、卫星通信、仪器仪表及天文探测等正向着频率范围大、大带宽、高动态范围、地域广等方向发展,对毫米波器件的性能提出了新的挑战。微波光子学是研究微波和光波相互作用规律及应用的一门新兴学科。它利用光子学方法产生、分配、控制与处理宽带毫米波信号,被认为是应对上述挑战的有效途径,由此引发的科学问题已经成为微波光子学当前的前沿研究方向,其中微波光子信号处理借助光子技术通过光信号处理实现对毫米波信号的处理,相对于传统电子器件具有高频、超宽带、可调谐和可重构等优势,具有广阔的应用前景。本文结合国家重点基础研究计划(973计划)项目(新型宽带大动态毫米波器件及应用中的微波光子学基础研究),围绕微波光子学领域中光子信号处理技术,重点研究光真延时及光子射频移相技术。本文的主要研究工作及创新成果如下:(1)光控波束形成网络中光真延时(OTTD)技术的研究。OTTD技术抗电磁干扰能力强,体积小、重量轻,并能有效抑制波束偏斜,被认为是宽带相控阵天线的可选技术之一。在基于可调谐激光器和色散器件的OTTD研究基础之上,针对一维模型结构复杂、难以实现大规模扩展等问题,本文提出了一种二维OTTD波束形成技术方案,该方案生成的高增益波束可扫描空间的指定方向,有效地降低系统了复杂度及对可调谐激光源的要求,并适用于相控阵天线的大规模扩展。(2)光控波束形成网络中的功率均衡与控制的研究。在实际的光控波束形成网络中,由于各种光器件的波长响应度不一致,如光耦合器对不同波长信号的耦合系数不一样、光放大器对不同波长信号的增益不平坦、光滤波器在不同波长处的插入损耗不一致以及其它非线性器件的影响等,都不可避免地引起各路光信号功率差异,尤其是在大规模的光控相控阵天线中,这种功率差异更为明显,因此需要考虑均衡或控制每一路光信号的功率,实现各通道间的功率均衡或控制,从而抑制光控波束形成网络生成波束的旁瓣,提高其系统性能。本文提出了一种光功率控制的方法,该方法实现了各路光信号功率的均衡和控制,并进行了仿真验证说明。(3)光子射频移相技术的研究。移相器要求能够实现RF信号相位0~360。连续可调并且保持RF信号幅度不变,同时要求调谐精度高、操作频带宽、抗电磁干扰能力强、低损耗、简单易行。针对以上要求,本文提出了一种基于单边带调制光载波调相的光子射频移相技术方案,该方案利用优化后的光纤光栅实现了光载波和一阶边带的分离,通过对光载波相位的控制实现了RF信号相位0~360。连续可调,并且RF信号幅度基本不变,可处理RF信号的频率范围达到了22~70GHz。(4)基于光谱处理的光子射频移相技术。光谱处理是微波光子信号处理的分析和设计的一般方法,该方法以频谱形式表示信号,探索任意信号在不同的电光/光电变换及系统传输过程中的频谱演化规律,通过对每个光谱分量进行操作来实现RF信号处理功能。本文首次考虑了微波光子链路中色散引起的相位噪声问题,并提出了一种灵活高效、可调谐、可重构的光子射频移相技术,该技术方案利用光谱处理同时补偿和控制每一个频谱分量的幅度和相位,构造多个光子射频移相器的同时有效抑制色散引起的相位噪声。验证实验实现了15GHz射频信号相位0~360。连续可控,并且相位抖动小于2。,RF信号幅度变化小于2.5dB。