钛合金表面疏水的等离子体改性及其机理研究

来源 :大连理工大学 | 被引量 : 7次 | 上传用户:XYYWLC
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域,但由于具有较高的表面自由能,显示为亲水性,不具备自清洁性能,长期在潮湿空气中会发生腐蚀现象,并且一些装备中的钛合金部件容易产生结冰等现象,这在一定程度上限制了钛合金的进一步应用。自然界中以荷叶为代表的生物表皮超疏水和自清洁现象给了我们重要启示,研究发现荷叶自清洁功能是由表面疏水的蜡状低表面能材料和微纳复合结构的乳突共同引起的,如果能够按照这种疏水原理研发出超疏水表面技术,并将其应用于钛合金等金属材料上,则可以起到自清洁、抑制表面腐蚀和氧化,增强防潮和防冰功能。目前除日常用品外,一些行业也急需长寿命超疏水表面技术,如航空领域,发动机进气道口处的防冰,用以防止发动机性能损失及可能引发的故障,另外还可用于大气数据传感器及机翼前缘等处的防冰,用以解决阻力增加等问题,而在电子元器件及医疗器械领域这种需要也很明显。  目前,超疏水涂层多采用化学法制备,虽然工艺简单、易操作,但是制备的涂层结合力差、不耐冲击、环境适应性差,常面临涂层粉化、起泡、开裂以及疏水功能下降等失效行为。类金刚石膜(Diamond Like-carbon,DLC)具有优异力学性能,但是由于其表面能较高,因此疏水性能较差,如果通过元素对DLC薄膜的掺杂,将其表面能降低,在提高其疏水性能的同时,保障其具有良好的环境适应能力和使用寿命,将大大提高其可应用性,本文中将主要进行金属Ti和非金属F元素掺杂DLC薄膜研究,以揭示元素掺杂对薄膜疏水性能和力学性能的影响,同时注意到超疏水和良好综合性能表面的获得,通常是低表面能材料和粗糙表面形貌协同的结果,因此本文还研究了以超音速火焰喷涂(Supersonic Flame Spraying,HVOF) WC和纳秒激光制造的微盲孔为底层微结构,然后用低表面能掺杂DLC进行修饰的仿生疏水表面,具体研究内容及结果如下:  (1)采用微波电子回旋共振(Microwave Electron Cyclotron Resonance,MW-ECR)等离子体反应磁控溅射技术制备Ti-DLC薄膜,研究了薄膜的化学结构及成分变化,重点考察了不同制备条件对薄膜力学性能和疏水性能的影响规律。制备的薄膜被证明是一种TiC纳米晶镶嵌的纳米复合结构薄膜,其纳米硬度最高达到33GPa,磨损量最小达到12μm3,临界载荷最大达50N,水接触角达到最大值106.5°,分析结果显示Ti-DLC膜的表面能随着Ti元素百分比含量的增加先减小后增加。分析表明薄膜疏水性能的改善,主要是由于化学键结构和成分发生了变化。  (2)采用微波ECR等离子体化学气相沉积技术制备了F-DLC薄膜,主要研究不同能量、不同百分比的F元素掺杂对薄膜表面形貌和组织结构的影响,重点调查在此种变化下薄膜的疏水性能和力学性能变化规律。通过分析表明薄膜主要包含C-Fx(x=1,2,3)和C=C(F,H)交联结构,这种化学键结构导致其力学性能变差,如:纳米硬度一般在2-3GPa之间,临界载荷最高可达31N,而疏水性能大为提高,在优化工艺参数下,F-DLC薄膜最高水接触角可达159.2°。 F元素原子百分比含量对薄膜表面能有重要影响,含量的增加将使其逐渐降低,当含量为32.6%时,表面能降到最低(14.74mJ/m2)。  (3)采用离子轰击、超音速火焰喷涂及纳秒激光加工三种手段对样品进行了表面微纳结构的制造,研究了不同形貌对样品疏水性能的影响,同时将微纳米结构制造与低表面能薄膜沉积工艺复合,制备了具有微纳二级结构的超疏水表面。测试结果表明:离子束轰击作用下,钛合金基体的接触角随轰击能量的增加,总体呈现逐渐升高趋势;超音速喷涂WC涂层为底层的系列样品接触角,随样品表面形貌复杂化的提高而不断升高,对WC涂层样品进行F-DLC修饰后,水接触角达到最高166°;周期性微盲孔为底层微结构的系列样品接触角变化趋势与WC涂层类似, F-DLC膜修饰后,水接触角达到165.6°。  (4)基于分形几何理论,采用投影覆盖法,利用Matlab软件,对以WC涂层为底层微结构的样品进行实际表面积和分形维数模拟计算,并对样品的实测接触角和模拟接触角进行对比分析。基于Wenzel和Cassie理论,建立了周期性微盲孔的数学物理模型,用于实际表面积和接触角计算,重点分析了微盲孔结构对钛合金表面疏水性能的影响。模拟结果表明采用上述两种微结构可以提高样品表面的实际表面积和分形维数,从使其疏水性能得到进一步提高。
其他文献
在科学研究当中,人们越来越多的需要在低温环境下进行测量和实验,同时射频和微波电路也开始越来越多的应用到这些低温测量系统当中。量子芯片的射频测量系统即为工作于低温环境
一维纳米结构,例如纳米线、纳米棒、纳米带、纳米管等由于它们独特的物理、化学性质,在纳米科学领域引起了很大的兴趣。随着器件的微型化,对纳米线的尺寸要求越来越细,其量子效应
车内噪声是评价高速列车性能的一项指标,目前对车内噪声控制的研究远落后于高速列车的发展。列车高速运行时将产生剧烈的轮轨噪声、气动噪声等,这些噪声一部分传向无穷远,一部分
根据量子色动力学(QCD)的知识,夸克和胶子在高温高密的条件下,会发生解禁闭现象,从而形成一种新的物质形态—夸克胶子等离子体(QGP)。研究这种新的物质形态,对于我们了解宇宙的起
作为新一代照明光源,白光发光二极管(W-LED)因其寿命长、效率高、污染小等优点,在照明显示领域有着很大的发展空间。目前,通过紫外-近紫外激发三基色荧光粉获得白光的制备手段成为了 W-LED领域的重点研究方向。但这种方法需要多相荧光粉混合才能实现白光。而多相荧光粉的调控配比等问题严重的影响了其发光的色彩还原性。而且其制备工艺复杂,成本较高等因素限制了这种荧光粉的发展及应用。因此,制备一种新型高效的
单光子探测技术作为一种对微弱光信号探测的技术手段,广泛应用于高分辨率的光谱测量、天文测距、精密分析、光时域反射、生物发光、量子通信等领域。单光子光场为量子信息和
次氯酸在日常生活和工业中被广泛的用做抗菌剂和清洁剂,并且ClO-是一种重要的生物活性氧,内源性ClO-是生命必需的,有重要的抗菌特性,是生物体免疫系统最关键的活性氧物种。但是,生
电感耦合等离子体原子发射光谱法(ICP-AES)因其具有检测灵敏度高、分析检出限低、线性动态范围宽等诸多优点,被广泛应用于环境科学、生物科学、考古科学、地质分析、冶金分析、
ZnO是一种新型的II-VI族直接带隙宽禁带半导体氧化物材料,室温下带隙宽度为3.37eV,激子束缚能高达60meV,这使得ZnO在室温或更高温度下存在激子受激发射并具有很高的稳定性。Z