对E.Borel在函数论的几个工作研究

来源 :西北大学 | 被引量 : 0次 | 上传用户:yiyiweiwei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
E.Borel是对20世纪函数理论发展有重要影响的一位法国数学家。他的数学研究领域很宽,在数论、函数论、概率论以及它们在力学、统计学中的应用方面都有论著。本文仅限于Borel在函数理论五个方面“函数逼近理论”、“发散级数可和理论”、“函数奇点理论”、“测度理论”、“解析开拓理论”的工作进行探讨。在前人工作基础上,利用历史分析、比较研究的手法,基于原始文献,得到以下研究成果。 一、指出Borel提出其插值公式的思想与他利用插值方法研究整函数零点理论有关。其插值公式虽没有给出具体运算式,但在理论分析中意义较大,探讨了他的插值思想对M.Potron、J.W.Young、M.Frechet、L.Kantorovitch等人的影响。 二、19世纪末20世纪初是发散级数可和理论的繁荣期。数学家利用不同的可和技巧提出各自可和方法,其中以E.Cesaro的算术均值法和Borel的指数和积分可和法较为突出。深入分析了Borel提出可和方法的思想背景、思想演变过程,论述了他的可和思想在函数解析开拓、微分方程等方面的影响。 三、利用Taylor展开研究函数奇点是函数解析开拓理论研究的重要课题。探讨了Borel研究函数奇点的方法“关联整函数法”。对“函数奇点乘法的Hadamard定理”和“Taylor展开一般以收敛圆为割线”问题进行了深入研究,探讨了其思想的演变过程及重要影响。 四、较为全面地探讨了Borel在测度理论方面的工作。指出他的测度思想来源于函数解析开拓理论。Borel以零测集思想为指导,利用构造性方法给出了与Lebesgue不同的积分理论,对F.Riesz、A.haar等人的积分理论产生了一定影响。 五、函数解析和单演是复变量函数理论中最为重要的两个概念,因此考察这两个概念的历史演变对了解复变量函数理论的发展有重要意义。从Borel关于级数∑A_n/z-a_n的研究出发,探讨了他关于函数单演和半解析理论的思想演变过程及对J.Wolff、T.Carleman、A.Denjoy等人影响。
其他文献
胶东丘陵地区传统民居特色鲜明,伴随着乡村旅游与乡村振兴,胶东地区民居的节能改造设计逐渐被重视。结合胶东当地气候特点,从绿色与节能的理念出发,调研胶东传统民居建筑使用
二十一世纪是计算机互联网技术迅猛发展的时代,人们普遍生活在一个网络环境中。网络环境的形成对于高中生法律意识的培养和建立可以说是一把双刃剑:一方面,高中生可以通过互
介绍了某汽车零部件企业新建工程中融合地源热泵、水蓄冷、余热回收等众多节能技术的空调系统设计。中央空调系统夏季利用水冷螺杆机组、地源热泵、水蓄冷技术为车间、办公楼