论文部分内容阅读
高速切削加工是未来切削加工技术的发展方向,而刀具材料是发展高速切削加工技术的关键,开发适于高速干式切削加工的陶瓷刀具契合了当今绿色环保的理念。本文以研制高性能氧化铝基复合陶瓷刀具材料为目标,对碳纳米管增韧增强氧化铝基多元复合陶瓷刀具材料进行了系统设计,优化了复合陶瓷刀具材料的制备工艺,成功制备出Al2O3/TiC/碳纳米管纳米多元陶瓷刀具材料,并对其力学性能、微观组织结构、断裂形式及机理进行了研究。基于刀具材料多元多尺度的设计思路,设计出以纳米A12O3为基体,微米TiC和微米A12O3为添加相,基体的粘结剂为Mo和Ni,而且以碳纳米管为添加剂的多元复合陶瓷刀具材料,并介绍了氧化铝基金属陶瓷材料测试试样的制备过程,以及材料的力学性能测试和微观结构表征方法。首先确定已纯化的碳纳米管的在材料组分中的含量,发现采用真空热压烧结的方法制备材料时,碳纳米管含量为2vol%时,相比未添加碳纳米管的Al2O3基多元金属陶瓷材料,其抗弯强度提高了33.95%、断裂韧性提高了92.98%。然后利用正交试验方法研究获得具备最佳力学性能的复合陶瓷新材料,其所需的条件是:添加2vol%碳纳米管,烧成温度为1620℃,保温时间25min,成型压力为30MPa。抗弯强度为1005.67MPa;维氏硬度为18.94GPa;断裂韧性为7.32MPa·m1/2。并研究了碳纳米管增强Al2O3基陶瓷刀具材料的机理分析,发现碳纳米管/Al2O3复合材料的断裂模式属于穿晶和沿晶混合断裂,仍以沿晶断裂为主;碳纳米管/Al2O3复合材料的强韧化主要来自碳纳米管的桥联和拔出机制以及裂纹弯曲、偏转和裂纹分叉。碳纳米管既能起到弱化界面的作用,又能起到裂纹桥联的作用,有效地阻止裂纹扩展。最后对所制备的纳米Al2O3基复合陶瓷刀具材料进行了摩擦磨损性能实验研究,采用扫描电镜观察了磨损表面的微观形貌。研究发现在法向载荷不断增加的同时,Al2O3基复相陶瓷刀具的摩擦系数也会随之增加;随着摩擦速度和法向载荷的增大,其磨损量逐渐增加。相比已经工业化的硬质合金刀具材料来说,氧化铝基纳米复合刀具材料具备很高的耐磨性。