论文部分内容阅读
目前,电力负荷预测对于电力工业的发展有着至关重要的作用。电力负荷预测是决定电力系统决策和优化的最主要的能源信息。作为整个系统质量性能的主要指标,电力负荷预测准确度的提高有利于节约能源,增加企业利润。由于时间序列的复杂性和不确定性,使得能耗预测的精度较低。影响电力负荷预测水平的因素(包括系统自身和随机条件)很多,例如能源结构的持续改变,EPC本身的拓展,这些都使提高能耗预测准确性的任务更加困难。本文的目的是在智能计算技术的基础上开发一种电力负荷预测系统,该系统能够很好的解决并有效改善短期预测精度低的问题。通过解决以下任务能够实现目标:(1)分析目前电力负荷预测的方法,找出提高预测精度最有前景的方向;(2)建立一种预测电力消耗系统的技术;(3)在前人研究的基础上,建立一个电力消耗预测系统;(4)开发系统的MATLAB程序的实验研究;(5)建立系统质量和可靠性的比较分析。本文实现研究目标的应用内容:数学建模和时间序列的预测方法;回归分析;模糊集理论;小波理论的基础;人工神经网络和混合网络理论;进化模型的方法;MATLAB数学软件包。科学成果的独创性包括:(1)波动负荷数据的呈现模式的特征是由时间序列的加性成分来进行识别和描述的,这个特点和性质区别于其它方法;(2)短期负荷预测的过程是在将时间序列分为不同的组别的基础上设计初步步骤,通过分别预测每个组件的特点,从而实现在联合使用的智能计算技术中的预测;(3)利用小波滤波和模糊神经网络对电力负荷预测系统的构建方法进行了分析,反映了高频、低频、中频区域的时间序列特性。本文采用的基于小波理论和神经模糊网络理论的电力负荷预测系统的预测结果优于以往使用的经典理论和方法。因此,能够完成并实现这项工作的目标。