论文部分内容阅读
毛细管电泳芯片是一种微量分离分析装置,它具有高效、高速、高通量、低消耗等优点,已成为蛋白质组学、临床医学、药物筛选等研究的重要手段之一。但是,通常意义上的毛细管电泳芯片系统的进样和分离过程往往需要高电压才能完成,且毛细管电泳芯片检测器的体积往往远大于芯片本身体积,使整个分析系统微型化面临诸多困难。为此,本文以低压、微型化、集成化为目标,开展低电压毛细管电泳芯片集成系统相关技术的研究工作。在分析毛细管电泳芯片非接触电导检测器结构、检测原理基础上,采用VHDL-AMS语言,建立平面四电极非接触电导检测器的VHDL-AMS模型,研究了待测溶液介电常数、绝缘层厚度、检测电极宽度、微沟道深度以及交流电压幅度等参数对非接触电导检测器输出信号频率响应的影响。在此基础上,对适合芯片电泳信号的检测方法进行分析,重点探讨了正交矢量锁定放大器以及互相关-Duffing混沌振子检测相结合的检测方法在电泳芯片非接触电导检测中的应用。并结合电泳芯片非接触电导检测特点,研究了小波消噪对电泳芯片非接触电导检测信号的降噪处理,并基于短时能量差函数对芯片电泳色谱的提取进行了探讨。研究了ITO微阵列电极、微沟道模具以及PDMS微沟道的制备工艺,并以ITO导电玻璃为基底制备了用于实验的低电压毛细管电泳芯片原型样品。基于SOPC嵌入式技术搭建了低电压毛细管电泳芯片集成系统。结合低电压毛细管电泳芯片微阵列电极特点以及阵列电极控制电路,提出了低压移动控制算法。并基于VHDL语言编制了低电压毛细管电泳芯片微阵列电极移动控制IP核,通过对8片MAX306多路选择开关构成的阵列电极控制电路的控制,使芯片微沟道内能产生驱动待测各组分定向迁移的电场;同时,为满足微阵列电极的驱动以及检测器激励的需要,采用模拟与数字两种方法设计了低电压毛细管电泳芯片微阵列电极控制、非接触电导检测所需的四相位信号源,一是基于MAX038信号发生器设计;一是基于DDS技术设计;结合非接触电导检测信号特点,设计了双差分阻抗/电压变换电路实现阻抗到电压转换以及信号放大,同时,采用模拟式锁定放大器实现检测器输出交流信号到直流信号的转换;采用SOPC Builder定制了以NIOSⅡ软核处理器为核心的SOPC系统,用于协调控制各功能模块,并基于C++Builder设计了低电压毛细管电泳芯片上位机电泳检测程序。在此基础上,进行低电压毛细管电泳芯片集成系统的初步实验,并提出了后续工作需解决的相关问题。