论文部分内容阅读
长寿、高效、节能和环保是衡量热风炉设计水平的重要指标,随着高炉大型化的不断发展,热风炉作为高炉的送风设备,更高的设计风温以及更高的工作压力也带来了更多的安全隐患,热风炉系统各类安全问题时有发生。因此,对热风炉的受力与变形、格子砖的结构优化进行研究十分必要。本文针对前人研究存在的不足之处及实际热风炉破损情况,对目前使用的两种典型热风炉本体炉壳、热风支管及热风总管管壳及热风炉本体耐火内衬的受力及变形进行了较为详细的研究,通过分析其各向应力、应变与位移分量,研究各处变形发生的机理,并对影响蓄热室格子砖换热的因素进行分析,为热风炉设计、操作中有针对性的降低各处受力、变形及提高风温奠定基础。以上研究为热风炉的长寿及高效设计、操作及维护奠定了坚实的理论基础。(1)建立了包含热风炉预燃室、燃烧室、蓄热室、热风支管、热风总管、热风阀、拉杆、波纹补偿器在内的两种典型顶燃式热风炉及管道炉壳热弹塑性应力数学物理模型,并将计算结果与现场实际测量数据进行对照,计算结果与测试结果基本吻合,验证了模型的准确性。(2)通过对A型热风炉及管道系统进行数值模拟分析,计算了盲板力作用下热风炉本体、总管及支管钢壳的应力及位移分布。在盲板力作用下,热风炉炉壳及热风总管发生不同程度的伸长及弯曲变形,导致支管两端扭曲变形,引发不同程度应力集中,热风出口上部、下部发生塑性应变。(3)研究了在燃烧期与送风期的循环工作过程中热风炉本体、总管及支管钢壳反复变形。A型热风炉本体炉壳反复升高、降低并靠近、远离热风总管,热风支管反复伸长或缩短,热风总管反复的靠近、远离热风炉本体,各支管补偿器随支管反复伸长或缩短,总管补偿器长度变化很小。(4)对含4座热风炉的B型热风炉及管道系统进行了数值模拟分析,研究了不同管道布局、操作制度以及主要设计、操作参数对炉壳受力、变形的影响,并与A型热风炉进行比较。B型热风炉本体炉壳受力与A型热风炉相似,但管道变形存在差异。在燃烧期与送风期的循环工作过程中,B型4座热风炉分别位于总管两侧,热风总管基本保持在总管中轴线附近;A型热风炉位于总管同侧,总管有明显远离热风炉的趋势。此外,B型热风炉同侧交替工作状态下热风总管位移比相对交替状态下小,但各补偿器长度变化较大。(5)建立了 B型顶燃式热风炉耐火内衬热弹性应力数学物理模型,对耐火材料在高温及耐火砖自身重力因素的作用下受力及变形进行研究分析,并与热风炉炉壳受力变形状态相结合,分析了热风炉耐火材料及炉壳间的相互作用。计算不同载荷下的热风炉本体内衬变形情况,发现热风炉内衬发生损坏可能性较高的区域有两处:在热风出口上部,耐火材料沿内衬圆周方向受拉、伸长,内衬较易松动,导致无法承受上方砖重;热风出口以上、燃烧室锥段下部,内衬向外扩张最明显,沿圆周方向受拉、伸长,内衬圆周方向极有可能松动或出现缝隙,这一结论与实际热风炉破损相符。(6)建立了蓄热室格子砖二维传热数学模型,提出了最优混风量的计算方法,得到了最优混风量。随着活面积的增大,风温升高,当活面积超过临界值时,高温区向下扩展,送风期温降加快,所需最优混风量增大,风温降低。随着格孔直径的减小、导热系数的升高、比热容的减小、当单位体积风量消耗的燃气减小、CO浓度的减小、预热温度的降低、空气过剩系数的降低,最优活面积逐渐减小。另外,随着空气过剩系数的升高,最高送风温度呈先增大,后减小的趋势,存在最合适的空气过剩系数。