论文部分内容阅读
差分进化算法是一类具有较强全局优化能力的智能优化算法,目前已成为解决工程实践中众多优化问题的重要工具,但现有差分进化算法的改进通常针对通用领域并在标准测试集上开展研究,较难直接用于求解实际的复杂优化问题。与此同时,智能交通系统是现代社会的重要组成部分,伴随着它的发展涌现出大量NP难的复杂优化问题,特别是在大规模和复杂环境下,智能交通系统涉及的复杂优化问题具有混合变量、多优化目标和分层优化等特性。然而,现有的差分进化算法在求解实际的复杂交通优化问题时,存在因未能充分利用问题的场景信息或启发信息,而制约了算法的性能和效率的局限性,具体体现在如下三个方面:(1)在混合变量优化中只区别决策变量的类型,忽略了分析决策变量的关系,制约了求解结果质量的提高;(2)在多目标优化中主要研究如何使帕累托前沿尽可能逼近最优解且分布宽广均匀,较少关注如何依用户偏好在帕累托前沿中返回更具有代表性的权衡解,影响了分时系统进行多次优化后运行结果的质量以及决策者的选择灵活性;(3)在分层优化中所采取的嵌套进化策略,通常需要消耗大量的计算资源,限制了算法在大规模场景的应用。
本文针对智能交通系统中电动汽车充电调度优化和交通信号控制优化两类复杂优化问题,将问题相关信息与差分进化算法的搜索能力相融合,设计出改进的差分进化算法,提高了差分进化算法求解上述复杂优化问题的性能。本文的主要创新点和贡献描述如下:
(1)针对混合变量存在耦合性的特征,提出分层混合变量差分进化算法,求解电动汽车协同充电调度问题。
电动汽车协同充电调度问题是基于交通路网中若干已知的充电站,为电动汽车车队的每个成员合理安排充电计划以完成各自行程,并使车队整体性能最优的复杂优化问题。在该问题模型中,决策变量不仅包括常规的充电站选择,还包括在每个充电站的充电模式和充电量。由于充电站点和充电模式属于离散变量,而充电量属于连续变量,因此该问题是混合变量优化问题。针对上述问题模型,本文提出了一个分层混合变量差分进化算法,根据充电模式对充电站的依赖性定义了两者的主从关系,并专门设计了三个问题相关的新算子,包括充电站路径构建、分层混合变量变异算子和约束感知评价算子。充电站路径构建算子根据电动汽车的荷电状态,自起点开始逐步选择一个可行的充电站点直至到达终点,完成了解决方案构建中最关键的部分;分层混合变量变异算子通过综合主从离散变异算子和经典连续变异算子,在种群进化时较好地保存了较优解的信息,提高了算法的求解性能;约束感知评价算子,通过处理每辆车的局部充电调度和协调在同个充电站的全局充电调度,确保了个体解满足问题的各项约束条件。在实验中基于实际路网与多种现有算法进行比较,验证了所提出算法的有效性。
(2)针对分时系统需多次为多优化目标选权衡解的特征,提出偏好多目标差分进化算法,求解多目标电动汽车充电调度问题。
由于调度需要考虑时间成本、充电费用和最终荷电状态等多个具有冲突的优化目标,因此电动汽车充电调度问题也是一个复杂的多目标优化问题。电动汽车充电调度系统需要分时重复地进行多目标优化,每次优化后需要用户从帕累托前沿中选择一个权衡解作为优化结果,来推动系统继续运行。为保证系统运行的连续性,可令用户预先设定默认偏好,允许系统在每次多目标优化后自动选择一个符合用户偏好的权衡解。相应地,本文提出了一个偏好多目标差分进化算法,通过维护四个协同进化的异构子种群来优化每代的非支配解集,并从中识别出拐点解和边界解再对其实行优先保留机制,使每次多目标优化后的帕累托前沿包含更高质量且更具代表性的权衡解。实验结果表明所提出算法在系统运行结果的质量和决策者的选择灵活性方面优于现有的其他方法。
(3)针对交通信号控制模型的双层优化特征,提出离线嵌套差分进化算法,求解大规模交通信号控制问题。
交通信号控制问题是基于交通路网的交通流量需求,为所有交叉路口合理设置信号控制参数,使路网达到用户均衡状态时的整体性能最优的复杂优化问题。该问题通常被建模成一个双层优化问题,上层是信号配时优化,下层是交通分配过程。为求解该问题,本文提出了一个离线嵌套差分进化算法,并在此基础上构建了一个双层的交通信号控制系统。该系统的上层采用自适应差分进化算法对所有交叉路口的信号控制参数进行全局优化,并在其评价算子中嵌入一个用户均衡的随机交通分配过程。该交通分配通常包括动态路径选择和迭代流量转移两个步骤来处理交通需求的每个起终点(OD对),当路网规模增大时将使嵌套差分进化算法的计算负担急剧增加。考虑到交通基础设施的稳定性和随机交通分配模型的概率容错性,本文进一步提出将动态路径选择步骤从嵌套进化过程中分离出来,并设计小生境蚁群优化算法预先为每个OD对生成多条较优的候选路径。通过离线完成路径选择任务,所提出系统可以避免为下层的交通分配过程重复地构建候选路径,从而大大节省了嵌套进化算法的计算成本,提高了其应用在大规模交通路网时的求解能力。在实验中通过在合成交通路网和实际交通路网上与现有方法进行比较,结果验证了所提出算法在求解质量和运行时间方面的有效性。
综上所述,本文针对智能交通系统中具有混合变量、多优化目标、分层优化特征的复杂优化问题,分别设计了分层混合变量差分进化算法、偏好多目标差分进化算法、离线嵌套差分进化算法,提高了差分进化算法求解这三类复杂优化问题的性能和效率,促进了差分进化算法的发展与应用。
本文针对智能交通系统中电动汽车充电调度优化和交通信号控制优化两类复杂优化问题,将问题相关信息与差分进化算法的搜索能力相融合,设计出改进的差分进化算法,提高了差分进化算法求解上述复杂优化问题的性能。本文的主要创新点和贡献描述如下:
(1)针对混合变量存在耦合性的特征,提出分层混合变量差分进化算法,求解电动汽车协同充电调度问题。
电动汽车协同充电调度问题是基于交通路网中若干已知的充电站,为电动汽车车队的每个成员合理安排充电计划以完成各自行程,并使车队整体性能最优的复杂优化问题。在该问题模型中,决策变量不仅包括常规的充电站选择,还包括在每个充电站的充电模式和充电量。由于充电站点和充电模式属于离散变量,而充电量属于连续变量,因此该问题是混合变量优化问题。针对上述问题模型,本文提出了一个分层混合变量差分进化算法,根据充电模式对充电站的依赖性定义了两者的主从关系,并专门设计了三个问题相关的新算子,包括充电站路径构建、分层混合变量变异算子和约束感知评价算子。充电站路径构建算子根据电动汽车的荷电状态,自起点开始逐步选择一个可行的充电站点直至到达终点,完成了解决方案构建中最关键的部分;分层混合变量变异算子通过综合主从离散变异算子和经典连续变异算子,在种群进化时较好地保存了较优解的信息,提高了算法的求解性能;约束感知评价算子,通过处理每辆车的局部充电调度和协调在同个充电站的全局充电调度,确保了个体解满足问题的各项约束条件。在实验中基于实际路网与多种现有算法进行比较,验证了所提出算法的有效性。
(2)针对分时系统需多次为多优化目标选权衡解的特征,提出偏好多目标差分进化算法,求解多目标电动汽车充电调度问题。
由于调度需要考虑时间成本、充电费用和最终荷电状态等多个具有冲突的优化目标,因此电动汽车充电调度问题也是一个复杂的多目标优化问题。电动汽车充电调度系统需要分时重复地进行多目标优化,每次优化后需要用户从帕累托前沿中选择一个权衡解作为优化结果,来推动系统继续运行。为保证系统运行的连续性,可令用户预先设定默认偏好,允许系统在每次多目标优化后自动选择一个符合用户偏好的权衡解。相应地,本文提出了一个偏好多目标差分进化算法,通过维护四个协同进化的异构子种群来优化每代的非支配解集,并从中识别出拐点解和边界解再对其实行优先保留机制,使每次多目标优化后的帕累托前沿包含更高质量且更具代表性的权衡解。实验结果表明所提出算法在系统运行结果的质量和决策者的选择灵活性方面优于现有的其他方法。
(3)针对交通信号控制模型的双层优化特征,提出离线嵌套差分进化算法,求解大规模交通信号控制问题。
交通信号控制问题是基于交通路网的交通流量需求,为所有交叉路口合理设置信号控制参数,使路网达到用户均衡状态时的整体性能最优的复杂优化问题。该问题通常被建模成一个双层优化问题,上层是信号配时优化,下层是交通分配过程。为求解该问题,本文提出了一个离线嵌套差分进化算法,并在此基础上构建了一个双层的交通信号控制系统。该系统的上层采用自适应差分进化算法对所有交叉路口的信号控制参数进行全局优化,并在其评价算子中嵌入一个用户均衡的随机交通分配过程。该交通分配通常包括动态路径选择和迭代流量转移两个步骤来处理交通需求的每个起终点(OD对),当路网规模增大时将使嵌套差分进化算法的计算负担急剧增加。考虑到交通基础设施的稳定性和随机交通分配模型的概率容错性,本文进一步提出将动态路径选择步骤从嵌套进化过程中分离出来,并设计小生境蚁群优化算法预先为每个OD对生成多条较优的候选路径。通过离线完成路径选择任务,所提出系统可以避免为下层的交通分配过程重复地构建候选路径,从而大大节省了嵌套进化算法的计算成本,提高了其应用在大规模交通路网时的求解能力。在实验中通过在合成交通路网和实际交通路网上与现有方法进行比较,结果验证了所提出算法在求解质量和运行时间方面的有效性。
综上所述,本文针对智能交通系统中具有混合变量、多优化目标、分层优化特征的复杂优化问题,分别设计了分层混合变量差分进化算法、偏好多目标差分进化算法、离线嵌套差分进化算法,提高了差分进化算法求解这三类复杂优化问题的性能和效率,促进了差分进化算法的发展与应用。