【摘 要】
:
近年来,随着智能可穿戴设备的迅速发展,与纺织品相结合所形成的智能可穿戴纺织品已被广泛的应用于监测人体的各种生理或病理信号,同时对于柔性能量转换设备以及本身能否满足穿戴者的舒适性与耐久性等提出更高的要求。聚偏氟乙烯(PVDF)作为一种半结晶型的压电聚合物材料,能够将机械能转化为电能,且与其他传统的压电材料相比具有质轻、柔软、频率响应范围宽、灵敏度高和易于加工等优点,被认为是智能可穿戴纺织品中优异的电
论文部分内容阅读
近年来,随着智能可穿戴设备的迅速发展,与纺织品相结合所形成的智能可穿戴纺织品已被广泛的应用于监测人体的各种生理或病理信号,同时对于柔性能量转换设备以及本身能否满足穿戴者的舒适性与耐久性等提出更高的要求。聚偏氟乙烯(PVDF)作为一种半结晶型的压电聚合物材料,能够将机械能转化为电能,且与其他传统的压电材料相比具有质轻、柔软、频率响应范围宽、灵敏度高和易于加工等优点,被认为是智能可穿戴纺织品中优异的电能供给材料之一,已受到广泛的关注。本论文首先通过静电纺丝法制备出不同浓度(8%、10%、12%)的PVDF纳米纤维膜,采用SEM分析了浓度对PVDF纳米纤维膜形貌的影响;得到最佳纺丝浓度之后,通过改变纺丝电压,研究了纺丝电压对PVDF纳米纤维膜的纤维直径、结晶性和压电性能的影响。随后,采用静电纺丝和二维编织相结合的方法制备PVDF压电纱线,分别对压电纱线的形貌、压电性能、力学性能和耐久性进行研究,并将压电纱线织造为具有平纹组织结构的柔软智能压电织物,同时对压电织物的形貌、压电性能、舒适性和耐久性进行研究。此外,本论文探究了压电纱线和压电织物在人体不同运动状态下的电信号响应。主要得出以下结论:(1):在纺丝浓度为10%、纺丝电压为15 k V的条件下得到的PVDF纳米纤维膜的纤维直径分布均匀,压电输出值最高,可达到0.93 V。(2):静电纺丝和二维编织结合可以制备出形貌均匀、压电性能优异、耐久性强和力学性能优异的压电纱线。压电纱线的最高输出电压为120 m V,最高输出电流17.3 n A;在30分钟的水洗测试之后输出电压基本保持不变;力学性能测试结果表明,压电纱线的最大应力可达到87.4 MPa,最大应变为78.9%;在经过3200次循环稳定性测试之后输出电压基本保持不变。(3):压电织物相比压电纱线的电信号输出有较大提升,耐久性和舒适性等方面与常用织物相比可以达到人体穿着的标准。织物最高电压输出为0.59V,最高输出电流32.8 n A,可将2.2μF的电容器在60s内的电压充至0.6 V;压电织物的透气性为349.7 mm/s,静态悬垂系数72.25%,最大顶破强力980.22 N。(4):压电纱线/压电织物可以检测人体不同运动情况下的电信号变化,为可穿戴的进一步发展奠定了基础。
其他文献
近年来,绿色纺织品因生态环保且对人体无危害而大受人们的推崇,因此,本文利用天然丝素蛋白对家纺棉纱进行整理,并利用改性后的纱线开发出一款绿色舒适性的家纺产品。丝素蛋白附着于家纺棉纱后能提高纱线的可织性和亲水性,再利用丝素家纺棉纱织造丝素家纺织物,使得织物具有吸湿、亲肤、柔软等众多优良的特性。首先,选取合适的蚕丝脱胶方案对蚕丝进行脱胶处理,然后将脱胶处理后的丝素纤维用溶解体系进行溶解,利用透析袋去除多
隔热材料已经广泛应用于建筑节能和航空航天等领域,随着科学水平的提高,对隔热材料提出了更严格的要求,要求材料在具有优异隔热性能的同时还要具有耐火性、高强度、轻质、抗腐蚀等性能,使得隔热材料的研究和探索成为热点。本课题以整体性能优异的机织间隔织物为增强体、导热系数较小的二氧化硅气凝胶等材料作为隔热填充材料制备了间隔织物增强二氧化硅气凝胶复合材料,并研究其隔热性能。首先选用无碱玻璃纤维合股纱为原料,通过
金属有机骨架材料(MOFs)作为一类近年来发展迅猛的多孔材料,凭借其独特的多孔结构和光电性能,已在吸附、光催化、荧光传感等领域展示出了非比寻常的应用优势。本论文主要探究两种Zr基有机骨架材料在处理水中Cr2O72-、Mn O4-和染料方面的应用潜能。主要研究内容如下:(1)采用氯化锆与2,2’-联喹啉-4,4’-二甲酸合成了中性骨架的Zr-有机骨架材料Zr-MOF-L1,并通过PXRD等方法对其结
目前全世界每年都有数以千万吨计的羊毛因为各种原因被遗弃,是数量最大的废弃蛋白质纤维资源。废弃羊毛对地球所造成的负担很大,会造成很多环境问题,但这些废弃羊毛拥有和普通羊毛相似的性能,完全可以再利用。因此,本课题以废弃羊毛为主要原料研制可降解的包装材料,对废弃羊毛纤维悬浮液的分散性和悬浮液分散表征方法进行了研究,得出了废弃羊毛纤维悬浮液分散的最佳工艺参数;对废弃羊毛湿法非织造包装材料的产品方案进行研究
在带材生产加工中,提高带材外观质量最重要的生产工艺是板材清洗,板材清洗过程中最主要的工具是挤干辊,我国目前使用的挤干辊材料一般是橡胶或金属,但这种材质的挤干辊因其本身缺少孔隙和不吸水的缺陷会导致挤干效果大打折扣。因此,国外发明了一种特殊材质的辊子—无纺布辊,其最大的特点是挤干效果好、寿命长、拆换方便等。国内有关挤干辊的研究更侧重于辊子的结构方面,本课题主要对无纺布辊用非织造材料进行研究。本课题的目
高硅氧玻璃纤维已广泛应用于航天器防热烧蚀材料、耐高温绝热体等方面,应用前景广阔。二元钠硅酸盐玻璃纤维生产高硅氧玻璃纤维纱,具有生产成本低、环境污染小等优点。但二元钠硅酸盐玻璃纤维化学稳定性极差,易受环境介质侵蚀,难以保存,原丝在空气中拉伸断裂强力会快速损失,纤维间相互粘结,无法进行退并、织造。目前的浸润剂不能有效保护二元钠硅酸盐玻璃纤维性能。本课题旨在研制一种能有效保护二元钠硅酸盐玻璃纤维生产、力
碳/碳(C/C)复合材料由碳纤维增强体和热解碳基体组成,C/C复合材料在服役过程中,界面脱粘导致的崩块、崩裂现象频发,异性构件性能和尺寸的不稳定性等,针对目前C/C复合材料在苛刻服役条件下的损伤演化问题,本研究将界面设计引入到碳纤维预制体增强的C/C复合材料中以提高复合材料力学性能。本文采用化学接枝法,将氧化石墨烯(GO)界面接枝在官能团修饰的碳纤维上,利用GO较高的比表面积和丰富的官能团构建纳米
碳/碳(Carbon/carbon,C/C)复合材料在服役过程中,崩裂、崩块、界面脱粘现象频发,严重制约了其在空天领域的深度应用。分析认为,C/C复合材料应力承载达到碳基体应力极限时,碳基体首先发生崩裂,产生破坏性裂纹并迅速传导至碳纤维(Carbon Fiber,CF)造成CF损伤,导致材料突发性失效。究其原因:一是碳基体缺乏亚微米、纳米尺度上的增强;二是碳纤维/基体界面结合状态不利于破坏性裂纹在
玄武岩纤维增强复合材料因其具有成本低、较高的机械性能以及良好的耐热性能等优点,广泛应用在汽车、航空、船舶和工业建筑等领域。然而,由于玄武岩纤维与树脂基体的界面粘结性能较差,导致其复合材料的整体机械性能不佳。本文采用共轭静电纺丝法将聚丙烯腈(PAN)纳米纤维包覆在玄武岩纤维表面制备了PAN/玄武岩纤维包芯纱,并织造了玄武岩纤维和包芯纱单向带及平纹织物,将其铺层与树脂进行复合固化制备了复合材料。采用纤