论文部分内容阅读
生物柴油因其具环境友好、燃烧性能优异等特点,成为全球石化替代能源研究的热点。但生物柴油均相酸碱催化剂催化转化过程存在产物分离困难、三废排放严重以及腐蚀设备等问题,固体催化剂因其具有反应条件温和、可重复使用、对环境污染少等优点,而被越来越多的生物柴油制备工艺所采用。本研究采用水热法和凝胶纺丝法分别制得单分散碳球及Fe/C纤维碳基载体,通过负载三种金属Fe、Ni、Sn的氧化物制得负载型固体催化剂。首先,通过SEM、XRD和FTIR等分析手段对这两种碳基载体催化剂的理化性质进行表征分析,然后用于催化裂解大豆油制备生物柴油,并检测其催化性能,研究结果如下:1)碳基载体的制备条件:当葡萄糖浓度为10%、反应温度180℃、反应时间为8h时碳球颗粒的分散性较好,有利于催化剂的负载。当pH值为6.0,Fe3+:葡萄糖摩尔比为3.0:5.0、空气湿度小于50%时,Fe/C纤维凝胶前体纤纺丝效果好,Fe/C纤维载体比表面积大,其比表面积(45.635 Am2·kg-1)要远大于普通固体颗粒催化剂(一般为2Am2·kgq)2)等离子体对碳基载体及催化剂的影响:低温等离子体表面改性处理碳球和Fe/C纤维载体,不影响其结构表征特性。低温等离子体处理负载催化剂表面可以提高两种碳载体催化剂的催化活性,平均提高5%的催化转化率。3)不同载体催化剂催化性能:相同碳基载体负载不催化剂、不同碳基载体负载相同催化剂,催化大豆油转化生物柴油的效率均存在较明显的差异,以Fe/C纤维为载体的催化剂催化性能均高于以碳球为载体的催化剂的催化性能,其中以SnO2@Fe/C纤维催化剂催化效率最高(73.56%)。4)大豆油的催化裂解反应条件:选用SnO2@Fe/C纤维催化剂为大豆油催化裂解催化剂,通过单因素试验,优化出裂解反应的最佳工艺参数为:催化剂用量3%(与大豆油的质量比)、反应温度450℃、反应时间60 min,生物柴油的实际产率为83.56%。5)催化裂解生物柴油组成成分:大豆油制备的生物柴油GC-MS成分分析结果显示该燃料油中富含烃类化合物,其中烷烃物质11种、烯烃物质3种、酸类物质1种和芳香烃类物质5种。综上所述,所制备的SnO2@Fe/C纤维制备的催化剂相对于传统的催化剂,催化活性高,低温等离子体表面处理能显著提高催化剂的活性,有着良好的发展前景。