论文部分内容阅读
在过去的几十年中,IV族半导体光电子器件在光电子集成,高速光通信和高速信号处理方面有着广泛的应用。Ge被认为是基于Si的光电探测器中最佳的候选材料。由于Ge薄膜外延生长技术的突破促使Si上Ge薄膜光电探测器的进步。Ge能带间接带隙小于直接带隙,所以Ge是间接带隙半导体,在光学应用中相对受到限制。为了克服这一困难,合成高质量的GeSn合金引起了人们极大的兴趣。Sn的添加可以降低直接带隙,并且可以通过控制Sn的含量实现吸收红外光波长的可调性,因此GeSn材料在红外光电探测方向有很好的应用前景。在如何制备更高质量GeSn薄膜的研究中,本文在两个方面做了改良。第一,选择GaAs作为基片,GaAs的晶格常数和Ge晶胞尺寸仅相差0.1%,这导致GaAs上的Ge缓冲层中穿透位错的密度远远小于Si上Ge缓冲层。从而大大降低了Ge缓冲层渗入GeSn薄膜中的延伸结构缺陷,从而减少了Sn的表面偏析和塑性松弛。第二,尝试制备三维外延结构的GeSn薄膜,大多薄膜光电探测器的都是二维平面结构的,制备三维外延结构的薄膜光电探测器可以改良二维结构的薄膜光电探测器的性能。本文尝试制作了二维结构的GaAs-GeSn薄膜PIN型光电探测器,研究了表面形貌特征、X射线衍射性能、X射线光电子能谱特性、拉曼光谱特性、红外光谱吸收特性和光电特性等性能。对于GaAs-GeSn薄膜的最佳生长条件、PIN结的纵向结构设计和制作,本文做了详细的研究:Sn组分对薄膜性能的影响,通过半导体光刻、刻蚀等流程制作探测器,测试了器件的伏安特性曲线及On-Off曲线,研究了Sn组分对及光电探测器性能的影响。最后,本文尝试制备了三维外延结构的GaAs-GeSn薄膜PIN型光电探测器,研究了薄膜的扫描电子显微图、拉曼光谱特性、红外光谱吸收特性和光电特性等性能。本文探究了三维外延结构GaAs-GeSn薄膜的阵列深度对薄膜及其光电探测器性能的影响。