【摘 要】
:
得益于弹性按需的服务模式和允许网络广泛访问的特性,云服务在互联网上的数量呈爆炸式增长,导致云服务市场中充斥着大量功能相似但服务质量(QoS)不同的同质化云服务。在这种情况下,用户很难确保所选择的云服务能够在特定环境中满足自身的完整需求。因此,结合推荐技术,对QoS进行准确和个性化预测成为了帮助用户选择与自身匹配程度较高的云服务的必要条件。近年来,基于QoS预测的云服务推荐在服务计算领域持续引起关注
【基金项目】
:
北京市教育委员会科技重大项目(KJZD20191000402);
论文部分内容阅读
得益于弹性按需的服务模式和允许网络广泛访问的特性,云服务在互联网上的数量呈爆炸式增长,导致云服务市场中充斥着大量功能相似但服务质量(QoS)不同的同质化云服务。在这种情况下,用户很难确保所选择的云服务能够在特定环境中满足自身的完整需求。因此,结合推荐技术,对QoS进行准确和个性化预测成为了帮助用户选择与自身匹配程度较高的云服务的必要条件。近年来,基于QoS预测的云服务推荐在服务计算领域持续引起关注,研究成果十分丰硕。然而,云服务部署环境的动态性及多样性不断增加,给现有服务推荐中的QoS预测提出了许多新的挑战:如何挖掘影响QoS预测的更多因素,如何构造更加强大的预测模型提高QoS预测精度等。针对以上问题,本文基于服务调用过程中的多源信息,充分挖掘影响QoS预测的多种因素,提出了一种基于多源特征提取的QoS预测方法;在此基础上,本文基于深度学习技术,提出了一种基于卷积神经网络的联合深层网络进一步学习多源特征交互并实现QoS预测。本文的主要工作及创新总结如下:(1)本文提出了一种基于隐因子嵌入的多源特征提取方法用于提取用户和服务的多源特征,并结合多层感知机实现QoS预测。首先,通过引入嵌入层网络提取用户和服务的深层显式环境特征;同时结合Doc2Vec算法对服务描述文档进行语义向量学习,避免了服务向量随机初始化导致的不稳定性;之后,提出隐因子嵌入方法,提取表示用户偏好和服务属性的深层隐式特征,并结合显式特征生成了基于显-隐的多源特征;最后通过引入多层感知机完成QoS预测。实验结果表明,基于隐因子嵌入的多源特征提取方法能够提高QoS预测精度,有效的缓解数据稀疏的影响,为从不同的多源信息中捕获关键特征提供了一种新的解决方案。(2)本文提出了一种以卷积神经网络为核心的联合深层网络(Joint Deep Networks,JDN)用于学习多源特征交互并实现QoS预测。其中,单隐层神经网络用于自适应的学习特征序列,降低特征排列顺序对卷积神经网络学习的影响;卷积神经网络部分用于学习多源特征间的高阶局部特征交互;多层感知机部分用于学习基于原始特征与局部特征交互生成的混合特征的高阶全局特征交互并实现QoS预测。基于真实世界的大规模数据集实验结果表明,联合深层网络能够有效的学习高阶特征交互,其QoS预测性能优于传统的协同过滤方法及目前先进的基于深度学习的预测方法。
其他文献
人脸活体检测作为人脸识别系统的重要安全保障环节,近几年在生物识别技术领域中飞速发展,广泛应用于移动支付、门禁系统和金融认证等场景。然而,人脸识别系统容易受到来自打印图像、数码图像以及回放视频等不同方式的攻击,使得人脸识别系统的安全性受到严重的威胁,所以,人脸活体检测在人脸识别系统中起着至关重要的作用,具有重要的研究价值。人脸活体检测在生物识别技术领域中是备受关注的研究方向,但目前仍存在以下几个问题
信号调制方式识别是指在未知调制信息的情况下对接收到信号的调制类型做出正确判断。通信信号调制识别不仅在民用领域意义重大,在军事及国家安全方面也都发挥着至关重要的作用,在电子战中,快速准确地判断出未知信号的调制方式是制胜的关键。在人工智能浪潮下,将机器学习算法与调制识别技术结合已经成为了发展趋势。本论文“基于机器学习的数字信号调制识别及FPGA设计与实现”主要研究基于机器学习的调制识别算法和神经网络的
开放车间调度问题是一种典型的组合优化问题,在制造业、交通和物流等领域被广泛研究。这类问题具有复杂的约束和巨大的解空间,因此求取最优解十分困难。目前,传统算法大都基于特定规则或局部搜索的策略来获得次优解,只适用于解决特定分布的问题,具有较大的局限性。近年来,深度强化学习在解决各类复杂决策问题中展现出较强的适用性和可扩展性,因此,本文基于深度强化学习求解开放车间调度问题。论文的主要工作如下:本文设计并
市政排水管道在城市建设中的应用逐渐增大,但由于地下空间不断开发,管道破损沉降,容易发生管道塌方、地面塌陷等严重情况。为了保障排水管道正常工作,市政工作井然有序,对排水管道进行应急检测具有重要意义。由于排水管道管径大小不一以及管内存在大量易燃易爆的有毒气体,人工下井作业十分困难,因此采用机器人下井完成管道应急检测是十分重要的。目前已有的管道检测机器人大多数只适用于新管道验收,很难适应排水管道这种恶劣
图像描述(Image Captioning)是指计算机对给定图像自动生成简洁的自然语言描述。计算机图像描述能够将图像信息转化为文本信息,从而实现信息不同模态之间的转换,在图像索引、智能教育、(盲人)视觉辅助等各方面具有广阔的应用前景。图像描述是一个多模态学习问题,不仅需要准确地识别对象、属性并捕捉到它们之间的关系,还需要考虑语法的准确性和语义的多样性,因此图像描述的实现需要结合计算机视觉、自然语言
在传统多标记学习算法中,用于训练的数据集中的每个样本被精确标注了多个相关标记,但由于近年来数据量急剧增长,精确数据集在现实情况中很难获取。现有的多标记学习算法对于不精确数据集的考虑通常是针对标记缺失的情况,然而在很多情况下数据集中的一个样本只是被大致分配了一组标记,该组标记中除相关标记以外还有一些不相关的噪声标记。为了解决多标记学习中的标记冗余问题,近年来提出了一个新的学习框架,即偏多标记学习框架
多模光纤内部不同模式的干涉会在光纤端面处形成具有复杂亮斑分布的光斑图样。由于光斑的形成与多模光纤的结构以及所处环境等具有密切联系,因此可以利用光斑的检测和处理对光纤所处状态进行传感。随着光斑图样检测技术与图像处理技术的日益发展,基于光斑的光纤传感器已经在多个领域表现出其独特的优越性,具有很高的研究价值。本文对多模光纤在不同弯曲半径下的输出光斑进行了仿真及实验研究,基于深度学习的方法,通过对多模光纤
多能谱CT(Computer Tomograph,CT)利用光子计数探测器直接将光信号转化成为数字信号,能够获得不同能量段的成像。多能谱CT可以利用K-边成像降低辐射或造影剂剂量,还可以利用多能谱特性提高软组织对比度。然而多能谱CT图像在物质浓度较低时,物质与背景很难被区分开来;当两种原子序数很接近的物质距离很近时,在成像图中会混在一起而难以区分。超分辨率图像重建旨在提高图像分辨率的同时解决物质与
相比传统的直流电机,永磁同步电机(PMSM)简化了结构,降低了成本,提高了控制性能,在高精度伺服控制领域得到了广泛应用。摩擦力矩干扰是影响永磁同步电机伺服系统精度和鲁棒性的重要因素之一。利用现代干扰补偿控制理论,设计非线性摩擦干扰控制器,补偿永磁同步电机伺服系统的非线性摩擦力矩干扰,提高伺服系统的位置和速度跟踪性能,具有重要意义。针对永磁同步电机位置伺服系统中存在的摩擦力矩干扰,本文结合分数阶控制
随着物联网技术和产业的飞速发展,催生了许多新兴的物联网应用场景,例如水下环境的信息监测、野生动物信息采集、山区道路危险预警等。现有的无线通信网络在缺少基础设施的场景下很难有效运行,而机会网络利用网络节点之间的相遇机会进行数据传输,无需基础设施,可以更好的适应这些新兴应用场景。由于无线网络节点之间搭建的临时通信网络是高度动态且部分连通的,节点之间可能不存在完整的连接路径。机会网络采用“存储-携带-转