论文部分内容阅读
连续性介电泳颗粒分离是微流控系统中对微纳米样品进行精确操控的核心手段,因为它在癌症的早期诊断,水质的污染分析等方面都有重要的应用。通常情况下,连续性介电泳颗粒分离的过程需要将样本聚集为宽度很小的粒子流以保证颗粒沿着相同轨迹运动并从相同的位置进入介电泳力作用范围。然而,目前实现样本颗粒聚集的方法只有流体挤压效应,并且这种效应需要冗余的外接设备,价格昂贵的微泵,复杂的多相流体操控。这使得微流芯片的高度集成化成了一个重大的挑战。诱导电荷电渗聚集是发生在物体表面的一种电化学效应,已经被证明是一种有效的颗粒聚集方法。因此,本文基于诱导电荷电渗流体聚集和介电泳偏移提出了一种新的颗粒分离方法。首先,分析了颗粒分离方法中的物理机理:基于对导体表面在交流电场中双电层的形成机理的分析,推导了复振幅形式的诱导电荷电渗滑移速度公式;基于介电颗粒在非均匀电场中的偏极化效应,推导了颗粒在交流电场中受到介电泳力的形式;考虑电场,流场,重力场等因素的影响,分析了介电颗粒的受力情况并推导了颗粒在微流控芯片中的速度方程和轨迹方程。其次,对微流控芯片的关键位置进行初步设计并确定了合适的工作参数:根据设计要求,对聚集区域,过渡区域,分离区域进行了初步设计;通过数值仿真研究确定了聚集区域的通道高度和工作参数;基于拉格朗日颗粒轨迹追踪的方法研究了过渡区域的结构对粒子流状态的影响规律;耦合电场,流场,重力场,通过数值仿真确定了适合颗粒分离的通道尺寸,分析了粒子流入口位置对颗粒分离效果的影响。再次,完成了微流控芯片的整体结构设计与加工及实验平台的搭建:从改善整体性能和加工的角度出发,进行了微流控芯片的整体结构设计;运用标准软光刻等技术完成了微流控芯片的加工;连接实验器材,完成了实验平台的搭建。最后,在微流控芯片中进行了系统实验:进行了颗粒诱导电荷电渗聚集特性和介电泳偏移特性研究;通过综合实验研究了入口流速对颗粒分离效果的影响,并对最佳状态下颗粒分离效率进行了评估。