论文部分内容阅读
目前工业上主要的制氢技术是甲烷水蒸气重整(SMR)工艺,但存在反应温度高、能耗大、工艺复杂等技术瓶颈。吸附强化甲烷水蒸重整(SE-SMR)制氢技术可以在线吸附反应生成的CO2,从而打破反应平衡,使反应可在低温下进行,而且可制得高纯H2,从而简化后序的CO转化流程,因而得到广泛关注。目前,该研究领域的关键问题包括:高耐久性吸附剂的开发、吸附和反应温度的匹配及吸附剂和催化剂的耦合等。针对以上问题,本文制备了K2C03改性Li4SiO4吸附剂和Ni/y-Al2O3催化剂,对吸附重整耦合反应行为及一体化吸附催化剂的制备工艺进行了研究。首先,分别对吸附剂的吸附能力和催化剂的催化活性进行评价。结果表明K2CO3改性Li4SiO4吸附剂在低CO2分压和水蒸气氛围下具有较好的吸附能力和稳定性;Ni/y-Al2O3催化活性较高,并且在低温和高温下稳定性均较好。其次,考察了吸附剂和催化剂在SE-SMR反应系统中不同条件下的耦合行为。结果表明,在450-650℃范围内,SMR反应平衡被打破,CH4转化率和H2收率被明显提高,在550℃ H2收率在SMR反应中在仅78%,而在SE-SMR反应中提高到95%以上;与分层填料方式相比,吸附剂/催化剂以机械混合方式填料时H2收率更高;增加吸附剂量会提高H2收率,但继续增加吸附剂量时H2收率变化不明显;且吸附剂/催化剂粒径应该控制在40目以上,因为粒径较小时吸附剂和催化剂接触面积较大,LiKCO3共融物容易迁移到催化剂表面,堵塞孔径,造成催化剂失活。此外,由于利用N2再生吸附剂时温度较高,需要后序的分离装置提纯CO2,因此本文提出了利用水蒸气再生吸附剂。与干气再生吸附剂相比,利用水蒸气再生吸附剂时再生速率较快,稳定性也较好,同时可以直接获得高纯CO2。最后,为了进一步减少扩散阻力,提高H2收率,本文研探讨了吸附剂/催化剂一体化的制备研究。发现采用浸渍沉淀法和溶胶凝胶法均可以制备出吸附能力优异的吸附剂,但由于Li2O、Al2O3及NiO高温下容易反应生成复合氧化物,导致所制备的一体化催化剂没有催化活性。而利用膨润土将吸附剂/催化剂粘结在一起时,该一体化催化剂表现出强化能力,但因膨润土组分复杂影响吸附剂吸附能力,进而导致强化效果比机械混合时较弱。