【摘 要】
:
随着全球变暖、冰川融化、沙尘暴等环境问题的出现,人们越来越重视环境问题。为了美好的生活生存环境,我们需要珍惜地球村,力所能及地保护环境,才能更好更久地发展。二氧化碳(CO2)浓度过高会导致温室效应,如何合理利用CO2是科学家们一直关注的问题。如果将CO2通过化学反应转化成其他有价值的物质,这样既能够缓解环境问题,也能够获得其他有利用价值的分子。在CO2催化转化过程中,有机碱发挥着关键作用。其中,具
论文部分内容阅读
随着全球变暖、冰川融化、沙尘暴等环境问题的出现,人们越来越重视环境问题。为了美好的生活生存环境,我们需要珍惜地球村,力所能及地保护环境,才能更好更久地发展。二氧化碳(CO2)浓度过高会导致温室效应,如何合理利用CO2是科学家们一直关注的问题。如果将CO2通过化学反应转化成其他有价值的物质,这样既能够缓解环境问题,也能够获得其他有利用价值的分子。在CO2催化转化过程中,有机碱发挥着关键作用。其中,具有特定结构的有机碱,能够在一定条件下固定和再释放CO2,这为CO2转化反应提供了前期准备。利用离子液体催化剂催化CO2与有机小分子的反应,可以将CO2转化成其他有价值的有机物,提高CO2转化的效率,进而缓解温室效应等环境问题。现代技术的快速发展极大地推动了各种化学计算软件的研发,理论计算与实验相结合,在微观角度分析实验数据,为实验结果提供理论支持。本文以此为基础,进行了两个有关于CO2的计算工作:1.用DFT理论计算方法,系统地研究了利用氨基功能化离子液体(Amine-Functionalized Ionic Liquids,AFIL)参与CO2和环氧氯丙烷的均相反应机理,并分析了AFIL在反应过程中发挥的催化和辅助开环的双重作用。计算结果表明反应机理分为两部分,首先是CO2溶于水形成的碳酸(H2CO3)与AFIL相互作用,生成质子化的AFIL和碳酸氢根(HCO3-),其次是生成的质子化AFIL具有离子液体和有机碱的双重功能,最终促进CO2和环氧氯丙烷均相反应得到产物环状碳酸酯。在环加成反应前期,AFIL中的咪唑环部分主要负责辅助催化环氧氯丙烷,破坏环状分子,使环断裂;而质子化氨基部分则主要负责稳定阴离子Br-,使亲核攻击能够顺利进行。基于DFT计算的机理研究启发,可以进一步设计类似的结构多样更加高效的双功能催化剂,提高CO2的转化率。2.多功能的1,3-二苯基胍(DPG)可以在温和条件下通过氢键形成碳酸氢盐二聚体来有效地可逆地捕获CO2,这是一项关于CO2的新研究。为了探究分子尺度上的结合形式,我们对简单的DPG体系,CO2和DPG溶液混合体系以及质子化体系进行了分子动力学(MD)模拟,从而初步了解了CO2固定和捕获过程中氢键相互作用。该研究的计算结果包括不同模拟系统中形成不同氢键的数量和键长。在质子化二苯基胍(DPGH+)和HCO3-的氢键模型中,模拟得到的双氢键模型与实验结果一致。DPG与CO2氢键相互作用以及DPGH+和HCO3-之间的相互作用,可以说明DPG溶液能够有效地捕集CO2。同时,还对文献中报道的其他与DPG结构相似的有机碱进行了量化计算,分别计算三种不同的有机碱在形成双氢键时所需的能量,对比分析该能量与实验中的产率。此外,还初步计算了DPG和Ag+共同催化CO2与高炔丙胺环加成反应机理。
其他文献
共价有机聚合物(COPs)具有低质量密度、良好的结晶度、优异的化学稳定性、高表面积等特性,在气体存储和分离,非均相催化,药物输送,光电转化以及能量存储等领域具有广泛的应用。近来研究发现,酸性介质中具有蒽醌基团和吡啶N嵌段的共价有机聚合物材料在易发生氧化还原反应。这种氧化-还原活性材料可作为赝电容储存材料。然而,该类聚合物导电率较低,二维片层结构常使其氧化还原功能团被掩埋,电解液难以渗透接近,电容储
河口余水位是影响水深和水位的一个重要因素,受到河流、海洋、气象等诸多要素影响,目前大量研究表明其主要取决于径流量、潮汐和风应力等共同作用,随时间和空间变化显著。长江作为我国第一大河流,随季节变化的径流对长江河口余水位起着重要作用,同时陆架环流等海洋因素的贡献亦不可忽视。研究河口余水位的时空变化及其成因对河口水位预报、水资源利用、海堤设计、防洪、航行等具有重要的重要科学意义和应用价值。长江流经我国1
短纤维增强树脂基(SFRP)复合材料具有加工方便、密度低、力学性能优异及耐腐蚀等优点,广泛应用于汽车、船舶及体育用品等领域。聚醚酰亚胺(Polyetherimide,PEI)作为一种特种工程塑料,具有优异的耐热性能、绝缘性能、阻燃性及成型加工特性,但与金属相比,其力学、摩擦磨损等性能较低。因此,为满足航空航天、军工装备等高端领域的应用要求,需要添加短切碳纤维等填料以改善PEI的力学、热学、电学及摩
在海洋科学考察原位化学分析需要开发各种电化学传感器,而其中关键的部件是参比电极。为此我们开发了Nafion膜封装制备Ag/AgCl参比电极,固相合成法制备固体电解质钛酸镧锂(LLTO)、钛酸镧钠(NLTO)全固态参比电极,并对这些参比电极的结构与性能进行研究。主要研究内容如下:(1)通过电泳沉积法制备Ag/AgCl电极,进一步用Nafion膜进行封装制备参比电极。加入AgCl用来维持AgCl电离平
随着在线网络平台的不断普及,网络购物、网络教育、数字娱乐等平台产生的文本数据呈现出惊人的增长,用户每天可以浏览到大量的文本。然而,过多的数据必然带来信息过载的问题。此外,用户在阅读冗长的文本时不仅会感到乏味,还很难获取到有价值的信息。遗憾的是,从大量的文本中选择和吸收所需的信息是具有挑战性的。文本标题自动生成方法是指为给定文本生成一个长度仅有一句的文本标题。鉴于文本标题不仅可以引导用户选择感兴趣的
建筑业既是中国的支柱产业,也是低碳转型的重点行业。建筑企业作为建筑施工过程的主体,在转型过程中面临严峻的挑战。一方面,为了促使企业进行节能减排,政府推行的限额与交易政策会影响企业的决策。另一方面,公平关切行为也使得建筑供应链决策变得更加复杂。同时,建筑供应链企业之间竞争与合作程度的不同也会让企业做出完全不同的决策,带来不同的减排和收益效果。本文针对由一个总承包商和一个分包商组成的两级建筑供应链,结
多孔金属有机骨架(MOFs)是一种具有与众不同的拓扑结构及孔径可调的多功能配位聚合物材料,在离子传输、成像、催化、气体存储及分离等方面大有可为。目前MOF合成手段较为成熟,据文献报道溶剂热法已经合成得到大量的MOF。所以本课题主要以溶剂热为合成手段,选择不同的手性有机配体作为主配体,通过辅助配体调节,和金属离子构筑手性MOF。通过文献阅读和课题组积累经验,本论文选择Cu2+,Co2+,Eu3+,T
二氧化碳(CO2)是一种丰富、无毒的C1资源,将CO2作为化学原料合成各种工业增值品是绿色化学中实现CO2转化的重要途径。多相催化剂由于容易循环回收且对环境不会造成污染,因此被广泛应用于CO2的固定与转化。有序介孔酚醛树脂材料因其高比表面积、可调节的孔道结构以及较大孔径等特点成为多相催化剂载体选择之一。本论文围绕氮掺杂功能化有序介孔酚醛树脂材料的制备及其催化相关CO2反应的性能研究开展工作,研究具
石墨烯具有高导电率、高透光性和化学稳定性等优异性能,是透明导电领域中最有潜力取代氧化铟锡(ITO)的材料之一。近年来随着光电器件对于透明导电薄膜需求的增大,如何避免转移等复杂工序,直接在绝缘基底上制备良好光电性能的石墨烯薄膜成为了人们研究的热点。为此,本文利用铜纳米颗粒作为催化剂,基于化学气相沉积法直接在绝缘基底上制备石墨烯透明导电薄膜。进一步研究铜纳米颗粒的分布对石墨烯制备的影响,探究石墨烯生长