论文部分内容阅读
Copula理论是一种基于联合分布的建模方法,最大的优点就是把边缘分布和相关结构分离开,它的提出为解决多元联合分布的构建以及变量间的非线性相关性问题提供了一个灵活实用的方法,人们将其广泛的用于金融领域,应用于投资组合、资产定价等方面,对金融数据相关性进行建模、分析有着非常重要的意义和作用。本文主要讨论了Copula理论在金融领域的应用,分析了基于Copula理论的多金融资产的投资组合优化及风险度量的问题。主要工作如下:首先介绍Copula函数的相关概念和性质,目前国内外Copula理论研究的进展情况,本文的研究思路、方法及相关应用。传统的金融数据分析是基于正态分布的假设,但正态假设有其局限性,往往不能满足,本文打破传统的基于正态分布的假设,讨论了Copula理论和Monte Carlo模拟在风险VaR估计中的应用,并选用股票数据实例分析了基于Archimedean Copula的风险VaR估计,结果表明此方法是有效的,而传统的VaR计算方法低估了风险。并进一步将此方法推广到多维资产的情形,说明与单支股票风险均值相比采用此方法确定的投资组合降低了金融风险。文章为了进一步提高模型构造的有效性,提出了一种基于Bayes理论的混合Copula构造方法,把多个Copula函数所具有的优点融合到一个混合函数中,通过调整各个函数的权重系数来调整函数尾部相关性强弱,比单个Copula相关结构更为灵活。另外,将Bootstrap方法引入到Copula中的参数估计中,实例表明采用Bootstrap方法对参数的估计与实际值比较接近,为我们提供了解决问题的另一种有效的思路。最后,对本文进行了总结,并对一些本文中可以继续探讨研究的方向进行了进一步的前景展望。