【摘 要】
:
布尔函数对于分组密码及流密码的安全性起着重要的作用。为了抵抗几种对密码体制的攻击,布尔函数需要具有几种相应的准则,包括平衡性,高代数次数,高非线性度和高相关免疫度等
论文部分内容阅读
布尔函数对于分组密码及流密码的安全性起着重要的作用。为了抵抗几种对密码体制的攻击,布尔函数需要具有几种相应的准则,包括平衡性,高代数次数,高非线性度和高相关免疫度等。近期代数攻击对流密码以及分组密码体制造成严重威胁,引起了广泛关注,这在密码学文献有所体现。这种攻击通过求解多变元超定方程组来恢复密钥,方法研究输入密钥流和输出密钥流比特之间的多元关系,当这种关系的低次倍找到,攻击可获成功。为了抵抗代数攻击,引入度量布尔函数安全性的一个新指标,叫代数免疫度。由于代数攻击,对于布尔函数一个高的代数免疫度是必须的。本文主要研究了布尔函数的代数免疫性及相关的一些性质,重点介绍了具最高代数免疫布尔函数的几种构造方法,并对对称布尔函数的代数免疫性进行研究,最后分析了代数免疫性与其它密码学性质之间的关系。得到了代数免疫度的一些结果:分析了代数免疫的国内外研究现状和发展趋势.介绍了布尔函数的基本概念和几种表示方法,布尔函数的代数免疫性以及一些基本的性质和定理,我们也给出了布尔函数其它的密码学性质,并发现这些性质是相互依赖相互制约的。研究了最优代数免疫布尔函数构造的不同方法,分析了对称布尔函数的代数免疫性以及相应的构造最优对称布尔函数的方法,同时也对构造出来的布尔函数的性质进行了分析。最后分析了布尔函数代数免疫度与其它性质之间的关系,特别是与非线性度、线性结构之间的关系,也分析了代数免疫度与汉明重量之间的关系。
其他文献
The reservoir conditions, oil and gas charge history and accumulation phases were studied for Yingshan Formation of Yuqi block, and an oil and gas accumulation
本文主要对虚拟纽结中的不变量问题展开研究.比照经典纽结的定义及性质,作者研究了虚拟纽结和链环的Jones多项式,并证明了它是扩展的Reidemeister移动下的不变量.之后,作者通过
图书馆是一座城市的文化灵魂,它的存在让文化有了更多生长的可能,也让文化有了安躺沉淀的空间.作为城市发展进程中担当中坚力量的图书馆,应该如何更好的完善知识服务,融入城
随着信息科学技术的飞速发展,信息安全快捷的传输成为一个热门的研究学科一-密码学.拟群理论作为组合设计的重要内容在密码学中的应用越来越广泛,如序列密码,Hash函数,秘密共享系
在论文中,我们研究了二阶椭圆边值问题的一种新的间断有限体积元方法。我们先给出新的间断有限体积元方法的表达式,然后基于此推导出间断有限体积元方法在网格依赖范数和L 2 范
非线性泛函分析是现代分析数学一个重要分支,已成为现代数学中重要研究方向之一,是处理许多非线性问题的重要而有力的工具.毋庸置疑,在非线性问题的研究中均涉及到方程特别是非线
Runge-Kutta法常用于求解刚性常微分方程(ODE)及刚性延迟微分方程(DDE)。当用于求解刚性延迟微分方程时,对延迟量的处理存在两类常用的不同插值方案。第一方案是利用已求出的
教育可为国家培养出各类不同的人才,其中科学的体育教学可为国家培养出更多优秀的体育人才,进而人们对于当代中学的体育教学,进行了深入化的改革,并将表象训练这一心理训练方法引
核医学成像具有独特的成像过程.它通过对体内示踪剂的分布以及动态变化的探测,得到器官图像信息.在很长一段时间内,核医学影像领域最基本的成像仪器是伽玛照相机,但当今单光子发
19世纪末20世纪初以来,新兴的量子理论和相对论重塑了物理学家的时空观和宇宙观.从薛定谔到维格纳,从冯·诺伊曼的定理到霍金的时间铁轨,物理学已不再局限于解释表面现象,而