【摘 要】
:
射频功率放大器是射频前端的关键器件,也是射频前端中消耗功率最大的器件,低效的功放会浪费能源,且发热严重,降低射频前端性能。另外,随着无线通信技术的发展,通信信号调制方式愈发复杂,信号带宽越来越宽,信号的峰均比越来越高。因此在射频前端中,功放需要宽带宽,高功率效率和高回退效率。Doherty功放因其硬件电路实施简单,是无线通信设备中的最常用的效率提升技术。基于上述背景,本文对宽带功放和Doherty
论文部分内容阅读
射频功率放大器是射频前端的关键器件,也是射频前端中消耗功率最大的器件,低效的功放会浪费能源,且发热严重,降低射频前端性能。另外,随着无线通信技术的发展,通信信号调制方式愈发复杂,信号带宽越来越宽,信号的峰均比越来越高。因此在射频前端中,功放需要宽带宽,高功率效率和高回退效率。Doherty功放因其硬件电路实施简单,是无线通信设备中的最常用的效率提升技术。基于上述背景,本文对宽带功放和Doherty功放进行研究,做了如下工作:1.针对高效率单管功放难以跨越倍频程工作的问题,利用阻性二次三次谐波阻抗连续逆F类理论设计了一个工作在0.6~2.7GHz(大于两个倍频程)的宽带高效率功放。首先介绍了阻性二次三次谐波阻抗连续逆F类理论,然后利用低通滤波器法设计了功放的输入匹配网络,基于宽带电抗补偿网络和宽带阻抗变换网络的方法设计了功放的输出匹配网络。最后功放在0.6~2.7GHz实测饱和功率39~41.7d Bm,功率附加效率48.6%~61.4%,饱和增益为9.4~11.8d B。2.针对5G通信信号峰均比大于6d B的场景,设计了一个工作在3.5GHz的非对称高效率Doherty功放。通过分析载波功放和峰值功放的相移线作用,确立了相移线的设计方法。功放实测在3.5GHz峰值功率43.5d Bm,功率附加效率56%,8d B回退功率附加效率42%。3.提出一种新的双频Doherty功放的设计方法。在一种较窄带的Doherty结构的基础上进行补偿电纳,拓宽了该结构的频率使用范围和提高了该结构的回退效率。在该结构的基础上通过选择在两个频率进行电纳补偿从而实现双频Doherty功放。依据该方法设计了一个工作在2.6/3.5GHz的双频Doherty功放,功放实测在2.6GHz峰值功率42d Bm,功率附加效率45.4%,6.2d B回退时功率附加效率为45.8%,在3.5GHz峰值功率42.5d Bm,功率附加效率56.7%,6d B回退时功率附加效率为43.7%。
其他文献
毕赤酵母系统作为一种较为成熟的蛋白表达系统,不仅具有操作简单、生长速度快等特点,还具有真核细胞的翻译后修饰加工系统,且对营养要求低,可采用廉价的培养基,并适合于高密度发酵,被广泛应用于重组蛋白表达。利用核糖体rDNA整合是一种快速高效的多拷贝菌株构建的方法,在目的基因两端连上来自毕赤酵母rDNA中的非必需高度重复的基因片段,非转录间隔区(NTS),基于抗性胁迫及筛选可以快速获得一系列不同拷贝数的菌
由于其在储能材料和高温材料方面蕴含的巨大应用潜力,AB2型Laves相晶体结构材料受到理论和实验工作者的广泛关注。通过外来原子的替换和掺杂,基于特有的晶格结构以置换固溶体的方式构建多组元合金,是对结构属性进行调控、改善合金材料预期性能的主要手段。通过理论计算的方法对新结构的物理化学特性进行详细而深入的研究,既有助于清晰认识体系内部原子间相互作用,又可以为实验期望合成和制备的材料提供性能预测。基于密
助推策略在促进公众低碳行为方面具有效果佳且成本低的优势,但将其广泛运用到减碳政策中将引发公众对决策自主性可能被侵犯的担忧。助推型减碳政策要获得更高程度的公众支持,需要系统了解公众对助推型政策设计中多个属性的偏好。论文采用联合实验设计,从受益者、助推目标、公民社会参与、实施者、助推技术、透明性及替代技术这七个政策属性切入,分析了公众对助推型减碳政策的偏好,并使用机器学习方法探索了不同群体在助推型减碳
随着显示技术朝大尺寸、超高分辨以及柔性可穿戴方向的快速发展,开发出低成本高性能薄膜晶体管(TFT)驱动背板技术十分关键。金属氧化物半导体由于具有较高的迁移率、高透明度、良好的均匀性和低温制备工艺等优点,被认为是新一代显示背板驱动技术。随着科技的进步与发展,功能各异的电子产品大量融入到了人们生活的方方面面。与此同时,也产生了大量的电子垃圾,给人类的健康和生活环境造成巨大的威胁和挑战。因此,开发出一种
微操作机器人系统作为现代装备制造业中的高端装备,是多学科交叉融合的产物,拥有技术密集程度高、附加值高、社会效益高的特点,具备给高端装备制造和前沿医疗服务产业链带来变革的潜力。视觉感知系统在微操作机器人中,具有非接触、高灵活度、大信息量、直观可视化等特点,在实现自动化的过程中扮演着举足轻重的角色。更加复杂、更加精细、更加高效是微操作的发展趋势,这也给精密视觉感知系统提出了更高的性能要求。当前的视觉运
聚合物太阳能电池(PSCs)具有重量轻、成本低、柔性和可大规模生产等优点,有巨大的应用潜力。最近几年,PSCs的光电转换效率(PCE)迅速提高,目前已经达到了18%。但想要实现PSCs的商业应用,我们还需要进一步提高器件的效率和稳定性。PEDOT:PSS作为PSCs中常用的空穴传输层(HTL),有电导率低、酸性和吸湿性的缺点。另一方面,由于有机半导体的吸收窗口窄,活性层的吸收覆盖率不够高。这些都限
以柔性直流技术构建的柔性直流配电网具有控制灵活、组网能力强大等特点,可作为解决未来城市电力供应问题的新方案。2018年12月,世界首个规模最大的多端交直流混合柔性配电网互联工程在广东珠海唐家湾成功投运,该工程通过三个模块化多电平(Modular Multilevel Converter,MMC)柔性直流换流站实现了区域中压交流配电网的柔性互联,对改善配网结构,构建未来能源互联网起到了领头示范性的作
随着芯片集成度的不断提高,金属氧化物半导体场效应管(MOSFET)在尺寸缩小的过程中受到短沟道效应的制约,三维MOS器件鳍式栅场效应晶体管(FinFET)和圆柱形双栅场效应晶体管(CSDG MOSFET)通过增加栅极对沟道的控制面积来提高栅控能力,从而提高输出电流及对短沟道效应的抑制能力,是未来器件的发展方向。因此,建立FinFET和CSDG MOSFET的模型,研究它们的电学特性规律,对更好地理
脑卒中是一种常见的急性脑血管疾病,卒中后大部分患者会出现上肢功能障碍,目前患者功能康复的主要方式是康复训练。研究表明,相比于传统康复训练方式,机器人辅助训练可以提供多模式化的训练方案,有效提高脑卒中患者的康复训练效果。由于人体上肢康复训练比下肢训练更加复杂,肢体运动功能恢复更慢,因此,研发上肢康复机器人具有重要的研究意义和临床价值。目前,在上肢康复机器人结构设计方面,外骨骼式上肢康复机器人因其能更
随着工业化的发展与城市化的推进,电力电缆因体积小、安全性高和抗干扰性强等优点而被广泛应用于电力传输和电力分配。然而,由于受到生产工艺、土壤条件和运行时间等多种因素的影响,电力电缆绝缘会出现局部劣化,从而引发闪络、局放等现象,最终导致电缆永久性故障。因此,研究电缆早期故障的检测和识别方法,及时维护和更换存在绝缘缺陷的电缆,对提高电力系统的安全性和稳定性具有重要意义。在对电缆早期故障进行检测和识别的研