论文部分内容阅读
自从1978年Koenker和Bassett提出分位数回归方法以来,在计量经济学的研究领域中涌现了大量的分位数回归模型,分位数自回归(QAR)模型便是其中之一。QAR模型能较好地刻画经济金融序列数据中的非正态性、非对称性和动态性等特征。它是运用分位数回归方法研究时间序列模型的理论起点。近年来,QAR模型越来越受到国外学者的青睐,并已成为时间序列分析领域的研究热点之一。QAR模型的基本思想是在AR模型框架下,引入分位数回归方法以刻画时间序列中的非对称变化特征。QAR模型提出的时间不长,还有许多问题亟待解决和完善。本文针对QAR模型理论中存在的不足,扩展和改进了现有的QAR模型估计和诊断检验方法,使之能更好地应用于实际经济问题研究。本文的主要创新点如下:(1)在基本QAR模型的基础上,采用蒙特卡罗模拟方法分析了QAR过程的平稳性和样本矩的统计特性,推导了QAR过程的自相关函数,并系统阐述了QAR模型的建模策略。(2)由于不同分位数回归曲线之间容易出现交叉,这会影响QAR模型估计的准确性。为此,本文对QAR模型的估计方法进行了研究,阐述了三种估计QAR模型回归参数的方法——QR法、RCQR1法和RCQR2法,讨论了这三种估计量的一致性和有限样本性质。研究结论表明,当样本容量较小时,QR法是最理想的估计方法;而在样本容量较大时,RCQR2法的估计效果更好。当QAR模型的误差项服从非正态分布时,RCQR2法在参数估计上的优势尤其明显。(3)本文模拟分析了有限样本条件下,拟似然比(QLR)统计量在检验QAR模型回归系数显著性的检验尺度和检验功效。结果表明,这种检验方法具有较好的检验功效。基于上述研究,本文提出了序贯检验方法,用于确定QAR模型的最大滞后阶数;比较分析了多种不同滞后阶数选择方法在有限样本条件下的准确性与稳健性。模拟结果显示,基于QLR统计量的序贯检验,尤其是基于supAn统计量的序贯检验,具有较好的有限样本性质,其检验功效显著优于SIC和AIC准则。(4)在实证研究方面,本文运用QAR模型研究了我国通货膨胀率的持久性及其非对称性动态特征。研究结果表明,不同分位数上的QAR模型的回归系数存在显著差异。从通货膨胀率条件分布的低分位数到高分位数,我国通货膨胀率的持久性不断增强。基于不同分位数τ上的单位根检验结果表明,我国通货膨胀率序列具有总体平稳性和局部非平稳性特征。在受到负向冲击或减速通胀状态下,通货膨胀率序列的变动往往呈现平稳自回归过程:而在受到正向冲击或加速通胀状态下,通货膨胀率序列的变动通常表现为单位根过程。根据QAR模型预测得到的临界分位数值,可以有效区分通货膨胀率变动路径中的平稳点和非平稳点。