论文部分内容阅读
微生物是脂肪酶的重要来源,其中根霉是微生物脂肪酶的重要生产菌。根霉脂肪酶已广泛应用于酶促酯交换、酶促酯水解、油脂精炼等工业,但是根霉脂肪酶属于中温酶,高温下半衰期(t1/2)较短,而且酸碱耐受性差,在应用过程中易失活,其耐受性及催化活性还有待提高。本文综合利用了二硫键设计、基于折叠自由能(ΔΔG)的理性设计、分子动力学模拟等手段,对来源于华根霉(Rhizopus chinensis CCTCCM201021)的脂肪酶r27RCL进行设计、筛选和优化,从“小而精”的突变库中筛选到了热稳定性和耐碱性提高的突变体,再利用化学修饰的手段,进一步提高酶的活性。具体内容包括:(1)通过引入二硫键的方式提高酶分子的热稳定性。以Disulfide by Design软件对脂肪酶r27RCL内部及表面可能形成的二硫键突变位点进行预测,从中选择了表面7对、内部5对潜在的二硫键进行实验验证。最终筛选出分子表面的二硫键突变m9/10(S85C/Q145C)和分子内部的二硫键突变m17/18(F223C/G247C)。m9/10及m17/18的T5030值分别提高4.2℃和8.5℃,60℃下的t1/2比野生型分别提高4.5倍和19倍;m17/18的最适p H由8.0上升至9.0;碱性条件下的耐受性也有所提升。(2)通过理性设计(Fold X5)的方法提高酶分子的热稳定性。以突变位点的ΔΔG和位点的柔性(B-factor和RMSF)为筛选依据,综合选取了19个氨基酸位点(共30个点突变)进行实验验证,获得了热稳定性显著提升的突变酶m22(S142A)、m26(S250Y)、m28(Q239F)和m29(D217V)。突变酶中m29的Topt提升至45℃,T5030值分别提高了4.1℃,5.5℃,6.0℃和7.2℃,60℃下的t1/2比野生型分别提升4.6、5.3、7.6和14.5倍。突变体的模拟结构分析表明脂肪酶局部结构的疏水性是热稳定性提高的主要因素之一。分子动力学模拟(MD)结果表明,突变限制了脂肪酶局部区域的柔性从而提高了热稳定性。(3)组合正向突变位点获得组合突变酶m30(F223C/G247C/S85C/Q145C),m31(S142A/S250Y/Q239F/D217V)和m32(F223C/G247C/S85C/Q145C/S142A/S250Y/Q239F/D217V)。m30、m31和m32的Topt上升至45℃、45℃和50℃,T5030值分别提高了14.2℃、15.8℃和21.2℃,60℃下的t1/2比野生型分别提升34.4、41.8和74.7倍。m30和m32的p Hopt均由8.0变化至9.0,耐碱性提升。(4)利用分子动力学模拟(MD)研究了m31和m32热稳定性提高的机制,结果表明,r27RCL中部分氨基酸残基的均方根涨落(RMSF)值远高于m31和m32中的对应位点,说明突变使得部分不稳定的氨基酸柔性变小,从而使整个酶更加稳定;m31和m32的溶剂可及表面积(SASA)、回旋半径(Rg)和吉布斯自由能变(ΔΔG)较r27RCL下降约7 nm2、0.02-0.03?和25-50 kcal/mol,表明热稳定性突变体的结构更加紧密;m31和m32较r27RCL均多形成了一对盐桥(Glu292-His171),也使它们具有更好的稳定性。(5)基于两亲聚合物对酶的化学修饰提高脂肪酶催化活性。以均苯三甲醛、聚乙二醇(3-氨丙基)醚和1,6-二氨基己烷或1,12-二氨基十二烷为原料,设计并合成类亚胺型新型两亲聚合物P1和P2。它们在水溶液中形成纳米颗粒,并可以进一步包裹脂肪酶形成粒径为150-600 nm的纳米粒子。聚合物的包裹可以显著提升脂肪酶的催化性能,在P1和P2添加浓度为0.04 m M时,可将脂肪酶催化活性提升2.75和3倍。此外,P1还对热变性和化学变性脂肪酶的构象起到促进复性的作用。综合分析表明,聚合物起到促进酶活和辅助复性的作用可能主要通过以下因素实现:1)聚合物提供酶催化的油水界面,2)聚合物中亲水的乙二醇结构和酶分子中的氨基形成氢键。