论文部分内容阅读
分子通信是纳米机器之间进行信息交流的重要通信技术,在环境、工业和医疗等领域具有广阔的应用前景。作为纳米机器间的重要通道,间隙连接(Gap Junction,GJ)随着分子通信技术的兴起在传输行为方面也得到了快速发展。然而,GJ传输行为模型仍然存在局限性,且分子通信细节难以描述;此外,外部刺激信号对GJ介导的分子通信过程的影响机制也尚不明确。针对以上问题,论文的主要工作如下:1)在GJ代谢耦联的行为方式下,以钙离子作为传输信号,针对目前建立的GJ模型忽视连接蛋白类型差异而存在局限性的问题,引入渗透率这一连接蛋白多样性参数,优化了GJ传输模型,改善了模型在连接通道方面具有特殊性的问题。实验结果表明,渗透率参数能够正确反映不同连接蛋白的传输差异,优化后的模型更契合实际生物场景。2)在已优化的GJ代谢耦联模型基础上,针对因模型具有特殊性使分子通信过程中的细节难以描述的问题,提出了基于GJ蛋白影响下的信道过滤机制。解释了过滤机制的基本原理,并设计了一种星型传输的过滤方案,利用优化后的模型,对所提出的方案进行了验证。实验结果表明,不同刺激强度和GJ蛋白的渗透率差异影响过滤的实现过程。3)在GJ电耦联的行为方式下,以心肌细胞为例,针对外部消极刺激(高糖)影响GJ介导的分子通信过程不明的问题,建立了外部消极刺激与GJ数量关系的数学模型,利用信息论知识推理分析,得到了连接蛋白个数变化影响信道容量和传输延迟的结论。实验结果表明,外部消极刺激使GJ个数降低,随之信道容量也逐渐降低,且传输延迟不断升高,最后利用已有生物实验佐证了模型的合理性。论文实现了对GJ代谢耦联行为模型的优化,完善了分子通信中过滤这一细节,丰富了现有分子通信理论,有助于提高药物靶向治疗的效率;建立了电耦联下消极刺激强度与GJ数量关系的数学模型,分析得到了外部刺激对信道容量和传输延迟的影响,模型有助于设计GJ通道的纳米器件。