一些图的拉普拉斯特征值之和

来源 :安徽大学 | 被引量 : 0次 | 上传用户:sttyuanchao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图G=(V(G),E(G))是一简单连通图,其中V(G),E(G)分别表示图G的顶点集和边集。图G的拉普拉斯矩阵的k个最大的特征值之和被定义为Sk(G)=k∑i=1μi(G),1≤k≤n.其中μi(G)(i=1,2,…,n)为图G的拉普拉斯矩阵的特征值,n是图G的顶点数。图G的拉普拉斯矩阵的特征值之和在许多领域中有着广泛的应用,近几十年来引起了研究学者的普遍关注。   本文中主要讨论了Brouwer的一个猜想:设G是简单图,Sk(G)≤e(G)+(k+12)其中1≤k≤n。本文分别证明了此猜想对树,单圈图,双圈图以及满足一定条件的三圈图都是成立的,另外也说明了对不连通图森林也是成立的。   本文的主要结构:   第一章首先介绍了谱图理论以及图G的拉普拉斯矩阵的一些历史背景。在第二小节中介绍了本文中所需要的必备的基本概念和术语。   第二章,为了得到主要的结论,首先给出了一些相关的引理。其次,证明了Brouwer的猜想对树和森林都是成立的。   第三章中,对圈图进行分情况讨论,用反证法证明了Brouwer的猜想对单圈图,双圈图以及部分三圈图都是成立的。
其他文献
考虑如下具有非线性阻尼项的非线性电波方程的Cauchy问题,在小初值的情形下,方程Cauchy问题解的整体存在性,唯一性和衰减性.(utt-α△utt-△u-β△ut=△f(u)t,x∈(R)n,t≥0,(0.1)u(
对于非完整运动学系统和非完整动力学系统的镇定和跟踪问题,许多学者已展开广泛研究,系统的模型存在很多种不确定性因素,一般先设定参数已知。本文针对的非完整移动机器人,消
图G的H-系或H-分解是有序对(V(G),S),其中V(G)为图G的顶点集,S的每一个元素均为边不相交且与H同构的G的子图。当H为m-圈时,图G的m-圈分解或m-圈系得到了广泛的关注。   本文主
本文应用变分方法和临界点理论讨论了三类椭圆方程变号解的存在性和多重性.首先我们研究如下一类含非齐边值条件的椭圆方程:其中ΩcRN(N≥3)是一个具有光滑边界aΩ的有界区域,g(
有限域上的编码近几年一直是编码理论研究的热点之一,本文在前人理论研究成果的基础上研究了广义准扭转码的结构,主要研究生成多项式矩阵和校验多项式矩阵的相关性质.  第一章
本论文主要研究了两个大问题,即大型稀疏鞍点问题的迭代解法和矩阵方程(A1XB1,A2XB2)=(C1,C2)基于梯度的迭代算法.主要内容包括如下四章:   第一章介绍了鞍点问题及矩阵方程(A1X
本文工作之一是基于LaskarJ提出频率映射分析法(NumericalAnalysisoftheFundamentalFrequencies,NAFF),证明一种较LaskarJ情形下精度更高的窗口,Blackman窗口,此窗口在HunterC所
分数阶微积分作为一个经典的数学概念自从十七世纪就被人们所熟知,但是它并没有被广泛的应用于生活的各个领域。近几十年来,人们发现分数阶微积分对于改变和更好的帮助我们认识
目前EEG (脑电成像技术),MEG (脑磁成像技术)已经成为脑功能研究和临床诊断的重要技术手段。它们对偶极子的定位问题有着重要的研究价值。在研究EEG、MEG反问题时,大量的EEG、M