矩阵方程解的扰动分析

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:cnjhhzy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文研究三类矩阵方程解的扰动分析,由五部分组成。 在第一章,我们对矩阵方程解的扰动分析的历史背景和现状及前景进行综述。 在第二章,我们讨论讨论矩阵方程ATXA=D,该方程源于振动反问题并在结构模型修正中有用。本文利用矩阵分块与矩阵范数性质,获得该方程的扰动界,这些结果可用于模型修正中的数值计算。 在第三章,我们研究了矩阵方程ATXA=D,本文利用Moore-Penrose广义逆的性质,给出该方程解的条件数的上、下界估计.同时,利用Schauder不动点理论给出该方程的向后扰动界,这些结果可用于该矩阵方程的数值计算. 在第四章,我们本文研究了矩阵方程ATXA+BTYB=D近似解的向后误差分析,得到解误差的最大上界和最小下界。这些结果通过数值例子加以验证。 在第五章,我们研究摄动离散矩阵Lyapunov方程解的向后误差分析。通过矩阵Kronecker乘积和矩阵范数的性质,给出了正定解的向后误差估计,并且通过数值例子验证结论的稳定性。
其他文献
在本文中,我们介绍了双曲高度函数的概念及性质,建立了由双曲高度函数诱导的奇点类型和双曲平面曲线的几何不变量之间的关系,给出了一个双曲平面曲线的平行曲线的概念并且得到了
设图G=(V,E)是具有n顶点和m条边的简单连通图,图G的邻接矩阵A=A(G)=(αuv)n×n,其中αuv表示顶点u和v邻接,图G的邻接矩阵A(G)的特征值μ1≥μ2…≥μn,其中μ1为邻接矩阵A(G)的最
在试验设计中,一阶回归模型通常被合格模型用作从众多因子中筛选出那些效应显著的因子,而Q和QB准则能够比较简单地从大量的合格拟合模型中找出具有最优性质的设计。本文主要探
最近几年,利用子群和商群来刻画有限群的性质已经成为了一个热点话题.许多群论学者也给出了大量的新子群及其性质,例如,s—半正规子群、付正规子群、弱c—正规子群、c*—正规子群
风险理论是当前精算界和数学界研究的热门课题,在现代经济、政治活动中起着越来越重要的作用。破产概率的研究是风险理论的重要分支之一。本文是对经典破产模型加以推广,研究在
本论文主要研究具有扰动的一阶时滞泛函微分方程正周期解的存在性问题及其应用.证明了在一些合理的条件下,且非线性项具有非正扰动时,此问题至少存在一个正的ω周期解.证明主要依
作为广义线性模型和非参数回归模型的深入推广,广义部分线性单指数模型在现代统计中有重要的作用。本文利用自由节点的Bayes样条技术对广义部分线性单指数模型进行统计分析,我
本文基于梯度系统方法研究了广义Birkhoff系统的分岔,包括系统的平衡稳定性、奇点类型、奇点分岔、静态分岔和极限环不存在性等。第一章绪论,简要叙述了Birkhoff系统定性理论研
自上个世纪二十年代以来,Schrodinger方程就一直是数学物理界所关注和研究的核心论题之一,其理论和应用背景十分丰富,高阶Schrodinger方程甚至更一般的Schrodinger方程都是Schro
本文对拓扑空间上的等价关系与分离公理进行了研究,探讨了无限集X上的等价关系E与X上满足特定分离公理拓扑之间的关系。本研究分为三个部分:   第一章:给出本文所涉及到的主