论文部分内容阅读
跨季节埋管蓄热技术(Borehole Thermal Energy Storage,BTES)以建筑周边地下岩土作为蓄热介质,以埋管换热器作为中间热交换设备,在非供暖期将适宜性建筑可利用低品位热源输送至地下空间进行收集蓄存,并在供暖期对所蓄存热量进行提取和跨季节利用。不同建筑体量、场地环境、水文地质等条件下,BTES建筑供热系统在具体设计上千差万别。不同类型影响因素与BTES建筑供热系统性能间存在复杂的非线性关系,井群蓄热体单元(单井)间的热交互作用及井群蓄热体与周围传热边界的热交互作用也不可避免对井群长期热特性产生影响。本文深入调研了国内外BTES建筑供热技术研究应用现状,明晰了应用中存在的一些关键科学问题,理论分析、建立并验证了BTES系统单井和井群蓄热体三维瞬态传热数学模型。同时,围绕BTES系统的设计、运行和岩土物性3类参数,筛选出共计7个因素及相应50组随机抽样设计组合。最终采用定性定量相结合的全局敏感性分析(GSA)方法,结合8种共计11个BTES系统热特性评价指标,分析并揭示了不同影响参数及组合对BTES系统蓄热、取热以及蓄热体内部复杂热交互作用影响机制。在此基础上,探索出BTES系统的应用和优化设计策略,并以北方严寒气候区典型绿色农业大棚建筑为载体,开展BTES系统实体项目设计和应用,验证上述理论、方法与相关数据的鲁棒性。首先,基于BTES系统单井蓄热体传热理论,在不同蓄热运行条件下展开单井蓄热体瞬态热特性研究。结果表明:蓄热温度对换热性能以及岩土温度变化影响程度最大,相同蓄热温度下随流速增大换热量增加幅度大幅衰减;地下岩土在径向方向上温度梯度远大于轴向方向,蓄热过程中热损失主要通过径向远边界散失。热扩散半径主要随运行时间变化,且随着运行时间变长热扩散速度变得缓慢。其次,BTES系统井群蓄热体GSA研究结果表明不同影响因素对各热特性指标影响及交互作用机制较为复杂。蓄热温度(Ti)是影响蓄热体能量密度和平均换热量的关键因素,可解释上述指标90%以上变化。Ti和井深(Dp)是影响总注入热量的主要因素,两者之和决定注入热量95%以上变化。蓄热量和取热量受Dp和井间距(Sp)影响最为明显,Dp和Sp同时解释二者约50%变化。首要关键因素Sp与蓄热率呈正相关,与热损失率呈负相关;次要关键因素岩土导热系数(Sc)与蓄热率呈负相关,与热损失率呈正相关。Ti、Sp、蓄热时间间隔(CT)和Sc四个影响因素不同形式和不同程度影响着取热率。此外,CT与注入热量和热损失呈非线性关系,当CT处于5~11.5h或大于20h时,注入热量随CT变长而增大;当CT位于11.5~15h时,热损失随CT变长而下降。顶部保温层导热系数(Uc)一阶效应指数(S_j)最大仅为0.03,说明室外环境对采取保温措施的BTES系统影响较小,上述结果可用于指导不同气候区BTES系统的设计与优化。最后,本文以典型严寒气候区农业大棚建筑为载体,进行了BTES建筑供暖系统适宜性设计和实践应用。项目所在场地条件下,技术经济性指标较优的设计方案为:蓄热温度20℃、井深70m、间距3.5m、井数为42口(6×7布置形式),集热器面积280m~2。该设计方案与传统地源热泵方案相比可将地下岩土维持在设计蓄热温度范围,有效克服了地下岩土因取排热极度不平衡导致的地温逐年下降、系统效率低下和钻孔需求量大等诸多问题,在提升BTES系统整体性能的同时大幅降低了初始投资和运行成本。