【摘 要】
:
人脸补全是计算机视觉和图像处理领域中的一个重要话题。它的核心任务在于还原图像信息,使生成的补全结果与真值结果尽可能保持一致。由于现有的人脸补全方法没有对补全结果与真值结果的一致性进行强有力的约束,且忽视了人脸图像的对称性特征,从而导致无法对人脸的任意部位,尤其是对称部位,生成真实自然且与真值结果一致的补全结果。除此之外,高分辨率人脸图像已经成为主体,但是现有方法大多都无法适用于高分辨率人脸图像补全
论文部分内容阅读
人脸补全是计算机视觉和图像处理领域中的一个重要话题。它的核心任务在于还原图像信息,使生成的补全结果与真值结果尽可能保持一致。由于现有的人脸补全方法没有对补全结果与真值结果的一致性进行强有力的约束,且忽视了人脸图像的对称性特征,从而导致无法对人脸的任意部位,尤其是对称部位,生成真实自然且与真值结果一致的补全结果。除此之外,高分辨率人脸图像已经成为主体,但是现有方法大多都无法适用于高分辨率人脸图像补全。针对这些问题,本文对人脸补全方法展开了研究。主要的研究成果如下:首先,为了保证生成的补全结果真实合理且与真值结果一致,本文提出了生成性人脸补全方法。该方法采用了生成对抗网络来构建补全模型。其中,生成器采用“u-net”网络结构,用于生成补全结果。全局判别器和局部判别器以判别损失的形式来指导补全结果的生成,它们分别使生成的补全结果语义合理、真实自然。除此之外,本文还采用了结构损失和像素损失来约束补全结果与真值结果的一致性。然后,根据人脸图像的对称性特征,提出了对称性感知人脸补全方法。该方法是在生成性人脸补全方法的基础上针对人脸的对称性部位补全进行了优化。优化策略分为两步,首先是侦测人脸的对称性元素(眼睛、鼻子、嘴),然后利用侦测元素构建损失函数来优化人脸的对称性元素的补全。对于对称性元素侦测,本文提出了一个启发式的侦测方法,该方法可以有效的提高侦测的准确率。对于对称性元素补全的优化,本文采用了对称判别器,并利用对称判别损失以及对称像素损失来对检测的对称性元素的补全进行优化。最后,本文在对称性感知人脸补全方法的基础上进一步提出了高分辨率人脸补全方法,以实现对对称性感知人脸补全方法的高分辨率扩展。本文采用了改进的渐进式训练方式来获取高分辨率人脸补全模型,采用了风格损失来优化补全结果的高频细节,使生成的高分辨率补全结果更加真实自然。定性和定量的评估实验表明,本文的人脸补全方法相比于现有方法在视觉效果以及评估指标上都具有一定的提升。
其他文献
当前,随着科技的快速发展,不同的工业应用场合对焊接接头要求并不一样,故更有针对性提升焊接接头性能是未来发展趋势,这就意味着在焊接工艺的选择中开展多目标优化的研究具有较大的紧迫性。但焊接工艺参数与接头性能之间呈现复杂的非线性关系,以及不同焊接性能难以实现同时最优。因此基于实验,探究工艺参数中多目标优化相关的理论和方法具有较大研究价值。针对港口机械超大型构件中箱梁结构对接接头和T形接头,设计了三因素三
随着工业机器人在焊接领域的应用越来越广,自动化、数字化和智能化成为焊接过程的重点发展方向,研究焊缝纠偏控制过程对促进焊接工业的发展具有重要意义。在厚板多层多道焊缝跟踪实际工业应用中,市场上的激光焊缝跟踪产品多数只能跟踪第一道打底焊道,而对后续焊道难以实现跟踪。因此,本文旨在探究基于视觉传感的人机交互机器人焊缝纠偏方法,建立相应的视觉传感焊缝纠偏控制系统,以逐步解决多层多道焊接焊缝跟踪问题。为满足复
生物电传感器是生物电检测技术的核心传感器件,它的灵敏度与抗电磁干扰能力对生物电信号的高保真记录至关重要。相比传统电学传感器,光学传感器具有灵敏度高、体积小及抗电磁干扰能力强等特征,在生物电检测领域更有优势。因此,为了提高生物电传感器的灵敏度与集成度,本论文基于光学传感原理,仿真设计一种等离子体微环生物电传感器和一种双支节援助型等离子体生物电传感器,并对其传感性能进行分析。本论文的主要工作:1.理论
命名实体识别(NER)是自然语言处理中关系提取、实体链接、机器翻译等任务的重要基础。近年来,随着各行各业产生的大量数据,对命名实体识别技术的准确性和适用性提出了新的要求。传统的命名实体识别方法需要花费大量的时间对特征进行手工设计,特征工程的质量直接影响模型的最后性能。近年来,研究利用深度学习模型代替人员人工构建特征,并在一些公开数据集上达到了比较好的性能。论文的主要工作如下:1.针对英文命名实体识
《普通高中语文课程标准(2017年版)》中,明确界定了整本书阅读教学学习目标:在阅读过程中,探索阅读整本书的路径,形成和积累自己阅读整本书的经验。重视学习前人的阅读经验,根据不同的阅读目的,综合运用精读、略读与浏览的方法阅读整本书,读懂文本,把握文本丰富的内涵和精髓。可见,整本书阅读教学,需要让学生在阅读过程中,掌握一定的阅读策略,并学会灵活运用。
气体检测传感器是仪器科学领域中最活跃的技术之一,在医学、生物以及国防等众多场合都发挥着关键作用。随着新型气体传感器登上实时快速检测的舞台,快速识别复杂气体、高灵敏度、小型化等目标也对气体传感器性能提出了诸多挑战。得益于微机电加工技术(MEMS)的迅猛发展,电容式微超声传感器(CMUT)已经从其传统的超声技术领域转向更多的传感应用,如气体传感、湿度传感等,这都与其谐振频率受许多物理量影响分不开,而与
近年来人脸识别技术在安防、金融、娱乐等行业得到了广泛应用。深度学习算法是人脸识别技术实现的关键,然而深度学习人脸识别技术在嵌入式设备应用中仍存在许多问题,一方面,由于大规模人脸训练集存在大量冗余特征,网络模型训练前向传播速度不高,另一方面,由于提取人脸特征的网络模型结构复杂,算法嵌入式运行速度不高,该技术未能得到普及。针对上述问题本文面向自动驾驶应用场景,研究了嵌入式深度学习人脸识别算法,搭建了嵌
随着饮食水平的提高,各类肠道疾病的发病率也不断增加,结肠息肉和憩室是结肠镜检查中常见的疾病,严重时会引发肿瘤甚至癌变。目标检测在图像识别和分类任务中占有着重要的地位,是计算机视觉领域中一项非常重要的研究课题,近几年在医学领域的应用也越来越深入。本文提出了一种基于深度学习的计算机辅助诊断系统(Computer Aided Diagnosis,CAD)用于结肠息肉、憩室等常见病变检测,以降低患有结直肠
二氧化氮是一种有毒气体,其主要来自于汽车尾气排放、重工业等。大量二氧化氮存在于空气中,在污染大气的同时导致酸雨、光化学烟雾等环境污染现象。近年来,作为重要大气污染源的二氧化氮的准确可靠检测日益引起人们的重视,从而产生了对高性能气敏传感器的迫切需求。发展高性能气敏传感器,必须提升气敏传感器的各项性能参数,包括灵敏度、选择性、稳定性、工作温度、响应/恢复时间等。本论文针对气体传感器目前的研究与发展趋势
近年来,随着深度学习和人工智能的不断发展,人脸检测和人脸识别已经被广泛应用于医疗应用、人机交互系统、机场检查等领域。目前,如何提升人脸检测和人脸识别的精度是近年来关注的热点。本论文针对提升人脸检测和人脸识别的精度,主要内容包括:1、实现了MTCNN人脸检测模型,并对MTCNN模型进行了改进。将深度可分离卷积引入MTCNN网络,将其替代传统卷积,减少卷积运算量;调整三个卷积神经网络结构的感受野,使得