论文部分内容阅读
在现代化工生产中,对节能环保的要求日益严格,急需要更加高效的新型填料。SP填料由于其独特的结构造型,能够极大程度改善填料塔内液体的不均匀流动,因此具有较高的传质效率,已经成功应用于许多化工分离过程。本研究通过CFD模拟技术对SP填料进行了结构优化,开发出综合性能更高的NS型填料,并建立了新型多尺度CFD模型对NS型丝网填料进行了流体力学性能研究。本研究取比表面积为700 m2/m3的SP填料的周期性代表单元进行计算流体力学(CFD)模拟,结果表明,填料流道转折处单位高度压降明显较高。将折角通道变为5mm圆弧过渡后,新型填料流道内单位高度压降变化平稳。为了研究填料性能,在直径为476mm的有机玻璃塔内,对比表面积均为700 m2/m3的SP丝网填料与NS型丝网填料进行了流体力学性能研究与传质性能研究,并与CY-700填料进行了对比。结果表明,实验范围内,NS型填料干塔压降较SP平均降低了 15.28%;在液相负荷L=22.49 m3·(m2·h)-1时,NS型填料湿塔压降平均降低了 20.01%;传质效率比CY-700 填料高 13.45%。本研究首次提出了适用于丝网规整填料的新型多尺度CFD模型,对NS型丝网填料的有效润湿面积及湿塔压降进行了研究。在丝网尺度上建立了能显示丝网上液膜流动特性的精确三维模型,研究了丝网两侧液膜厚度之比,发现由于丝网的多孔性,液体流经丝网会产生渗透作用,液体附着在丝网上向前流动,受重力影响,丝网上下两侧液膜厚度之比约为3:5。在填料周期单元,通过修改润湿角与进液量,将板波纹填料等效为丝网填料,在平板上得到了与丝网单侧相同的液流状态,研究了丝网填料的有效润湿面积与气液相负荷的相关关系,发现有效润湿面积随液相负荷的增加而增加,但两者并不呈线性关系,因为随着液相负荷的增加,液膜厚度也相应增加;在气相负荷较小时,有效润湿面积基本不受气相负荷的影响,随着气相负荷的增大,液体受到气体曳力作用,产生横向扩散,有效润湿面积迅速增大。最后,通过压降产生项机理与CFD的结合,得到全塔的湿塔压降。将模拟值与实验值进行对比,发现该模型具有较高的准确性,湿塔压降平均偏差为8.90%,仅在气液相负荷较大时偏差较大,在研究范围内最大偏差为24.76%。在新型填料设计与开发过程中具有较高的应用价值