【摘 要】
:
CO2的过量排放导致了温室效应等许多环境问题,利用丰富的CO2生产化工产品或可再生能源是具有重要意义的。甲醇是一种优质能源和高附加值化工产品,存储和运输很便利。随着甲醇需求的增加,CO2催化加氢合成甲醇得到了研究者的更多关注。开发高活性、高选择性和高甲醇产率的催化剂是CO2合成甲醇工业的关键。本文分别采用共沉淀法、浸渍法、固相研磨法制备了 ZnO-ZrO2催化剂,用于CO2加氢合成甲醇反应,筛选出
论文部分内容阅读
CO2的过量排放导致了温室效应等许多环境问题,利用丰富的CO2生产化工产品或可再生能源是具有重要意义的。甲醇是一种优质能源和高附加值化工产品,存储和运输很便利。随着甲醇需求的增加,CO2催化加氢合成甲醇得到了研究者的更多关注。开发高活性、高选择性和高甲醇产率的催化剂是CO2合成甲醇工业的关键。本文分别采用共沉淀法、浸渍法、固相研磨法制备了 ZnO-ZrO2催化剂,用于CO2加氢合成甲醇反应,筛选出了较优的合成方法;接着对较优方法的合成条件进行了优化;在此基础上考察了助剂Mg、Al、Cr、Fe的掺杂和掺杂量对催化剂的结构和性能的影响,以期获得较高品质的改性催化剂。不同方法制备的催化剂结构和性能有很大不同。固相研磨法催化剂杂质较多;浸渍法催化剂中ZnO简单分散在ZrO2上,没有进一步紧密结合;相比之下,共沉淀法催化剂纯度高,ZnO和ZrO2发生固溶,孔道结构丰富,催化活性更佳。催化剂的催化性能与催化剂的组分、孔结构和组分间相互作用密切相关。与单一成分ZrO2相比,分散在ZrO2上的ZnO存在大量的碱性位点,增加了 CO2的吸附;丰富的孔道结构、较高的比表面积有助于提高CO2转化率,但不是决定因素;Zn掺入ZrO2晶格形成的固溶体引发的协同作用导致了 ZnO-ZrO2的高甲醇选择性。共沉淀法的沉淀方式和陈化时间对催化剂的物理性质和催化性能均有很大的影响。在正向沉淀和不陈化时,催化剂具有更优的催化活性,CO2转化率9.02%,甲醇选择性88.49%,甲醇产率为6.24%。助剂的掺杂对催化剂的物理性质和催化性能均有很大的影响。Mg的出现细化了颗粒,增加分散;引入MgO碱性位点,增强了 CO2吸附,使CO2转化率有很大提升,但甲醇选择性有所降低。Cr的出现影响了 ZnO和ZrO2的结合,虽然CO2转化率有较大提升,但催化剂的甲醇选择性明显降低。Al的掺杂量较高时出现大量属于A12O3的微孔;引入了酸性中心,促进了加氢反应的进行;同时A12O3的亲水性影响了催化剂的甲醇选择性。Fe的掺杂使催化剂颗粒变大、孔道变宽,比表面积大幅下降;随着Fe掺杂量的增加,CO2转化率增加,甲醇选择性减小,甲醇时空产率维持在稳定值。当掺杂摩尔分数为3%的Mg时,催化性能得到了最大改善。CO2转化率12.93%,甲醇选择性81.54%,甲醇产率10.54%,是未掺杂催化剂的1.32倍。同时t-ZrO2结晶适中,ZnO和MgO与ZrO2结合紧密,发生了固溶,具有强相互作用;颗粒尺寸集中在25 nm,孔道丰富,比表面积达44.128 m2/g。
其他文献
热障涂层(thermal barrier coating,TBCs)因其较低的热导率及良好的高温稳定性,在保护高温合金、提高其工作温度方面有着优秀的表现,因而被广泛地应用于热机中,对提高工作效率、降低使用损耗率,减少航空航天发动机的涡轮叶片的磨损速度等起着积极作用。然而由于其工作环境及其恶劣而本身形貌及微观结构又十分复杂,使得涂层的失效难以被精准预测,对使用安全造成了极大危害。故而对热障涂层失效机
张力制度对于连轧钢管的尺寸精度具有重要的影响。本文结合某钢管厂Φ460mmPQF生产线生产实际,采用非线性有限元模拟软件ABAQUS建立三维热力耦合有限元模型并对实际连轧过程进行模拟分析;采用控制变量法研究不同轧辊转速、芯棒速度、芯棒与钢管内壁摩擦系数对轧制力、轴向应力均匀性的影响规律;以优化轧制状态为目的,提出连轧管工艺优化方案。具体的研究内容如下:(1)根据Φ460mmPQF机组的设备参数及现
谱写爱的教育乐章的第一人,陶行知先生当之无愧!教师只有给学生以亲近感、信任感、期望感,学生才会对教师产生依恋和仰慕心理,才能喜欢教师教的科目,听从教师的教导得以进步。
Al-12.7Si-0.7Mg挤压型材是东北大学自主研发出的一种新型可热处理含镁高硅变形铝合金。针对这种新型合金的焊接问题,东北大学又成功制备出一种与该新型合金成分相同的Al-12.7Si-0.7Mg合金焊丝。本研究基于原有配用合金焊丝的化学成分设计了添加不同含量混合稀土元素(Ce+La)的 Al-12.7Si-0.7Mg-xRE(x=0,0.4,0.6,0.8)合金焊丝,旨在进一步提高这种新型变
利用镁基金属易于产生取向性的特点及BaTiO3陶瓷物理化学稳定性优势,本文首次探索性研究了以BaTiO3颗粒和镁基(Mg、AZ91)材料之间相互掺杂后对其复合材料的组织及性能的影响规律。本文主要研究内容及结论如下:(1)开展了套管轧制Mg/BaTiO3陶瓷带材实验结果表明,0wt%Mg/BaTiO3陶瓷带材侧边形貌呈规则的多边形形状,套管大变形过程能够改变BaTiO3陶瓷的偏聚方式,形成一定的群体
电催化技术在开发清洁能源和降解污染物方面有广阔的应用前景,是目前的热点研究领域。其中开发具有高活性、高选择性和高稳定性的新型电催化剂是该领域的核心任务。具有特殊物化性能的金属氧化物被应用于多种电催化反应,且通过多组分设计有望进一步优化其性能。然而,目前对催化机理的研究不足以准确推算催化剂成分、结构等特性与其性能的关系,因此新型催化剂研究仍停留在重复机械的材料合成和性能检测模式。为推进金属氧化物电催
热镀锌板因具有耐腐蚀性能强、成本低、加工性能好等优点,被广泛应用于汽车、家电、建筑等行业。但热镀锌板在潮湿的环境下容易发生腐蚀,因此为延长热镀锌板的使用寿命,需对其进行钝化处理。传统的钝化工艺主要为铬酸盐钝化,但因六价铬为有毒物质,近年来铬酸盐钝化工艺的使用受到了严格限制,因此研发一种无毒、环保的无铬钝化工艺已成为热镀锌钢板钝化技术发展的主要方向。本文主要以热镀锌板的无机-有机复合无铬钝化工艺为研
近年来,随着科技和电子工业的快速发展,电磁污染也成为一个日益严重的环境污染问题。而电磁波吸收剂研究的快速发展为解决电磁污染提供了一个有效可行的方法。在众多吸波材料中,石墨烯由于质量轻、化学稳定性好、电导率和热导率优异等优点,受到越来越多研究人员的青睐。然而,石墨烯制备过程繁琐,价格高昂,所以本文致力于制备以石墨化碳球为基体的复合材料。此外,ZnO作为一种重要的宽禁带半导体,已经广泛应用于催化剂、传
搅拌反应器在冶金及化工行业具有广泛应用。压力能驱动的自搅拌反应器利用了高温高压流体自身能量,结合了管式反应器和釜式反应器的双重优势,通过驱动轮进行搅拌,不仅实现了物料的高效混合和能量的利用,同时,克服了传统搅拌反应器机械密封困难等问题。对这种新型反应器性能的研究和结构优化具有理论和现实意义。前期研究已经证实压力能驱动自搅拌反应器的可行性和初步的流动特性。本文在此基础上,借助物理实验、理论计算、数值
煤炭在我国的储量十分丰富,且未来很长一段时间内作为主导能源的地位不会改变,因此煤炭清洁化利用显得尤为重要。现有煤气化技术中,能源消耗量巨大是普遍存在的问题。与此相反,我国的电力系统中却存在大量电力浪费现象。传统的调峰技术发展陷入瓶颈,我们希望换一个角度思考电力浪费问题,从用户端入手,寻找一种有大量电能需求同时能在谷期运行的技术,作为多余谷期电的新去向。因此,我们希望将电催化引入煤气化技术,旨在降低