论文部分内容阅读
矢量水听器(Vector Hydrophone)有不随频率变化的“8”字形或心脏形指向性,可以同时接收声场声压和振速(v_x,v_y,v_z三个分量)信息,这样矢量水听器相对于常规声压传感器在信息量上就增加了4倍,因此由它构成的矢量阵与传统的声压水听器阵相比,相同尺寸的矢量阵可获得更大的空间增益。 本文从单个矢量水听器自身的特点出发,探讨单个矢量水听器波束形成的方法,在此基础上,将常规阵的波束形成算法引入矢量水听器阵的波束形成中,初步设计出相应的电路,以满足矢量水听器阵的波束形成的实时实现。 论文的主要工作如下: ◆结合目前国内外矢量水听器的发展,对矢量水听器的分类和特点、单个矢量水听器的波束形成和矢量水听器阵列的波束形成进行了介绍,推导出矢量水听器的信号模型,分析其指向性及其旋转特性,并对单个矢量水听器的波束形成及矢量水听器阵列的波束形成进行了分析和相关的仿真。 ◆由于论文的主要出发点是实现,本文根据矢量水听器阵列的特点(数据流量、计算量大、实时性强等)提出多处理器结构。在对TMS320VC54X系列处理器的性能进行分析研究后,确定本系统所采用的DSP处理器,并根据一般的多处理器系统结构来选择一种适合本系统的结构; ◆设计了矢量水听器阵列波束形成的系统框图和硬件实现电路。本系统各个部分按功能分为模块来设计,实现了对6单元(24路)矢量水听器输出信号的调理、采集、单个矢量水听器波束形成以及后端矢量水听器阵列波束形成运算,在核心逻辑单元(由FPGA构成)中设计灵活的数据流通逻辑,使得终端(后续水声处理设备)能够调用前端(矢量水听器阵列单元)的原始数据。在波束形成单元中设计了良好的扩展接口,可与后端方便的实时通信,系统逻辑单元实现了可重新配置(数据流通路径可配置、算法可配置)功能,使得算法更新、结构重配置得以实现,为后续的研究及实现提供了灵活的硬件基础。